Influence of hydrothermal synthesis conditions on microstructure characteristics of copper nanowires

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The dependence of the microstructural properties of copper nanowires on temperature (110, 120 and 130°C) and time (4 and 8 h) has been studied for the hydrothermal synthesis of copper nanowires using oleylamine and dextrose. The change in diameter of the Cu nanowires formed was monitored by spectrophotometry in the visible range. X-ray diffraction analysis was used to confirm the target crystal structure and the absence of copper oxide impurities, as well as to show the nonlinear dependence of the average size of the coherent scattering region on the temperature and duration of the synthesis process. The scanning electron microscopy results showed that, in general, increasing the temperature and duration of the synthesis process leads to an increase in the length of the formed copper nanowires from 45 to 150 μm, i.e. under certain conditions, ultra-long structures are obtained. As a result, the aspect ratio varies from 782 to 2358 by altering the synthesis conditions. Transmission electron microscopy shows that the sample obtained at 110°C (4 h) differs from the others by the presence of particles up to 10 nm in size on the surface of the nanowires. The microstructural parameters of the obtained materials were also studied by atomic force microscopy, and the values of the electronic work function of the individual copper nanowire surface in ambient atmosphere were determined by Kelvin probe force microscopy.

About the authors

N. P. Simonenko

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, Moscow, 119991 Russia

Email: n_simonenko@mail.ru
Moscow, 119991 Russia

T. L. Simonenko

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Moscow, 119991 Russia

Y. R. Topalova

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Moscow, 119991 Russia

P. Y. Gorobtsov

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Moscow, 119991 Russia

P. V. Arsenov

Moscow Institute of Physics and Technology (National Research University)

Dolgoprudny, Moscow Region, 141701 Russia

E. P. Simonenko

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Moscow, 119991 Russia

References

  1. Huang S., Liu Y., Yang F. et al. // Environ. Chem. Lett. 2022. V. 20. № 5. P. 3005. https://doi.org/10.1007/s10311-022-01471-4
  2. Ding Y., Xiong S., Sun L. et al. // Chem. Soc. Rev. 2024. V. 53. № 15. P. 7784. https://doi.org/10.1039/D4CS00080C
  3. Simonenko N.P., Simonenko T.L., Gorobtsov P.Y. et al. // Russ. J. Inorg. Chem. 2024. V. 69. P. 1265. https://doi.org/10.1134/S0036023624601685
  4. Hwang H., Kim A., Zhong Z. et al. // Adv. Funct. Mater. 2016. V. 26. № 36. P. 6545. https://doi.org/10.1002/adfm.201602094
  5. Arsenov P.V., Pilyushenko K.S., Mikhailova P.S. et al. // Nano-Structures Nano-Objects. 2025. V. 41. P. 101429. https://doi.org/10.1016/j.nanoso.2024.101429
  6. Simonenko N.P., Simonenko T.L., Gorobtsov P.Y. et al. // Russ. J. Inorg. Chem. 2024. V. 69. P. 1301. https://doi.org/10.1134/S0036023624601697
  7. Nam V., Lee D. // Nanomaterials. 2016. V. 6. № 3. P. 47. https://doi.org/10.3390/nano6030047
  8. Wang Y., Liu P., Zeng B. et al. // Nanoscale Res. Lett. 2018. V. 13. № 1. P. 78. https://doi.org/10.1186/s11671-018-2486-5
  9. Zhao S., Han F., Li J. et al. // Small. 2018. V. 14. № 26. https://doi.org/10.1002/smll.201800047
  10. Hwang C., An J., Choi B.D. et al. // J. Mater. Chem. C. 2016. V. 4. № 7. P. 1441. https://doi.org/10.1039/C5TC03614C
  11. Chiu J.-M., Wahdini I., Shen Y.-N. et al. // ACS Appl. Energy Mater. 2023. V. 6. № 9. P. 5058. https://doi.org/10.1021/acsaem.3c00703
  12. Li X., Wang Y., Yin C. et al. // J. Mater. Chem. C. 2020. V. 8. № 3. P. 849. https://doi.org/10.1039/C9TC04744A
  13. Yoon H., Shin D.S., Kim T.G. et al. // ACS Sustain. Chem. Eng. 2018. V. 6. № 11. P. 13888. https://doi.org/10.1021/acssuschemeng.8b02135
  14. Zhao Y., Zhang Y., Li Y. et al. // New J. Chem. 2012. V. 36. № 5. P. 1161. https://doi.org/10.1039/c2nj21026f
  15. Yu L., Wang Y., Wang J. et al. // Sens. Actuators, A: Phys. 2022. V. 334. P. 113362. https://doi.org/10.1016/j.sna.2021.113362
  16. Lah N.A.C., Trigueros S. // Sci. Technol. Adv. Mater. 2019. V. 20. № 1. P. 225. https://doi.org/10.1080/14686996.2019.1585145
  17. Kalinin I.A., Davydov A.D., Leontiev A.P. et al. // Electrochim. Acta. 2023. V. 441. P. 141766. https://doi.org/10.1016/j.electacta.2022.141766
  18. Bograchev D.A., Kabanova T.B., Davydov A.D. // J. Solid State Electrochem. 2025. V. 29. № 4. P. 1309. https://doi.org/10.1007/s10008-024-06118-8
  19. Khalil A., Hashaikeh R., Jouiad M. // J. Mater. Sci. 2014. V. 49. № 8. P. 3052. https://doi.org/10.1007/s10853-013-8005-2
  20. Kim N.K., Kim K., Jang H. et al. // Sci. Rep. 2023. V. 13. № 1. P. 22248. https://doi.org/10.1038/s41598-023-49741-7
  21. Cuya Huaman J.L., Urushizaki I., Jeyadevan B. // J. Nanomater. 2018. V. 2018. P. 1. https://doi.org/10.1155/2018/1698357
  22. Hosseini M., Fatmehsari D.H., Marashi S.P.H. // Appl. Phys. A. 2015. V. 120. № 4. P. 1579. https://doi.org/10.1007/s00339-015-9358-y
  23. Koo J., Lee C., Chu C.R. et al. // Adv. Mater. Technol. 2020. V. 5. № 4. https://doi.org/10.1002/admt.201900962
  24. Zha X., Gong D., Chen W. et al. // Nanomaterials. 2025. V. 15. № 9. P. 638. https://doi.org/10.3390/nano15090638
  25. Hong W., Wang J., Wang E. // Nanoscale. 2016. V. 8. № 9. P. 4927. https://doi.org/10.1039/C5NR07516E
  26. Ohiienko O., Oh Y.-J. // Mater. Chem. Phys. 2020. V. 246. P. 122783. https://doi.org/10.1016/j.matchemphys.2020.122783
  27. Conte A., Rosati A., Fantin M. et al. // Mater. Adv. 2024. V. 5. № 22. P. 8836. https://doi.org/10.1039/D4MA00402G
  28. Kim J., Kim M., Jung H. et al. // Nano Energy. 2023. V. 106. P. 108067. https://doi.org/10.1016/j.nanoen.2022.108067
  29. Ravi Kumar D. V., Woo K., Moon J. // Nanoscale. 2015. V. 7. № 41. P. 17195. https://doi.org/10.1039/C5NR05138J
  30. Duong T.-H., Kim H.-C. // Int. Nano Lett. 2017. V. 7. № 2. P. 165. https://doi.org/10.1007/s40089-017-0204-4
  31. Hadaoui S., Tran G., Naitabdi A. et al. // Nanoscale. 2025. V. 17. № 6. P. 3277. https://doi.org/10.1039/D4NR04079A
  32. Li Y., Fan Z., Yuan X. et al. // Mater. Lett. 2020. V. 274. P. 128029. https://doi.org/10.1016/j.matlet.2020.128029
  33. Ding S., Tian Y. // RSC Adv. 2019. V. 9. № 46. P. 26961. https://doi.org/10.1039/C9RA04404C
  34. Ravi Kumar D.V., Kim I., Zhong Z. et al. // Phys. Chem. Chem. Phys. 2014. V. 16. № 40. P. 22107. https://doi.org/10.1039/C4CP03880K
  35. Lu P.-W., Jaihao C., Pan L.-C. et al. // Polymers (Basel). 2022. V. 14. № 16. P. 3369. https://doi.org/10.3390/polym14163369
  36. Duong T.-H., Kim H.-C. // Ind. Eng. Chem. Res. 2018. V. 57. № 8. P. 3076. https://doi.org/10.1021/acs.iecr.7b04709
  37. Lewis C.S., Wang L., Liu H. et al. // Cryst. Growth Des. 2014. V. 14. № 8. P. 3825. https://doi.org/10.1021/cg500324j
  38. Liu G., Wang J., Ge Y. et al. // ACS Nano. 2020. V. 14. № 6. P. 6761. https://doi.org/10.1021/acsnano.0c00109
  39. Shahzad Khan B., Mehmood T., Mukhtar A. et al. // Mater. Lett. 2014. V. 137. P. 13. https://doi.org/10.1016/j.matlet.2014.08.095

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».