Growth characteristics, phase composition and optical properties of Ti–Sc–O thin films synthesized by atomic layer deposition

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Ti–Sc–O thin films were synthesized at 300°C by atomic layer deposition (ALD) via alternating between the reaction cycles with metal precursors and H2O as co-reactant. By varying the cycle ratio, the materials of [Sc]/([Ti] + [Sc]) = 13, 25, 44, 64, 82% were obtained. The films were examined via spectral and single wave null ellipsometry, X-ray photoelectron spectroscopy, scanning electron microscopy and X-ray diffraction. The formation of the material was demonstrated to be substrate-inhibited and to occur within the “temperature window” of ALD. As a result of Ti2p and Sc2p XPS spectra analysis, the oxidation states of the metals are Ti4+ and Sc3+. At low Sc concentrations (up to [Sc]/([Ti] + [Sc]) = 25%) the film crystallization into anatase phase observed for individual TiO2 film is suppressed. In the range of [Sc]/([Ti] + [Sc]) = 44–100% the materials of various cubic crystal structure types are formed: with the increase of scandium concentration the structure changes from disordered fluorite Sc4Ti3O12 to cubic Sc2O3-based solid solution. The refractive indices n(E), extinction coefficients k(E) and optical bandgap values are well described by the Tauc-Lorentz model. They vary between the corresponding parameters of the individual oxides depending on the composition, which is relevant for current problems of optics, photonics, solar energy and photocatalysis.

About the authors

D. E Petukhova

Nikolaev Institute of Inorganic Chemistry of SB RAS

Email: petukhova@niic.nsc.ru
Novosibirsk, Russia

I. V Korolkov

Nikolaev Institute of Inorganic Chemistry of SB RAS

Novosibirsk, Russia

A. A Saraev

Boreskov Institute of Catalysis of SB RAS

Novosibirsk, Russia

M. S Lebedev

Nikolaev Institute of Inorganic Chemistry of SB RAS

Novosibirsk, Russia

References

  1. Trubelja M.F., Stubican V.S. // J. Am. Ceram. Soc. 1991. V. 74. № 10. P. 2489. https://doi.org/10.1111/j.1151-2916.1991.tb06790.x
  2. Zaslavskii A.M., Zverin A.V., Melnikov A.V. // Phys. Status Solidi A. 1992. V. 130. № 1. P. 109. https://doi.org/10.1002/pssa.2211300113
  3. Shlyakhtina A.V., Belov D.A., Stefanovich S.Yu. et al. // Mater. Res. Bull. 2011. V. 46. P. 512. https://doi.org/10.1016/j.materresbull.2011.01.001
  4. Park M.H., Lee D.H., Yang K. et al. // J. Mater. Chem. C. 2020. V. 8. P. 10526. https://doi.org/10.1039/D0TC01695K
  5. Шляхтина А.В. // Кристаллография. 2013. Т. 58. № 4. С. 545.
  6. Keller K., Khramenkova E.V., Slabov V. et al. // Coatings. 2019. V. 9. № 2. P. 78. https://doi.org/10.3390/coatings9020078
  7. Kozhevnikova N.S., Ulyanova E.S., Shalaeva E.V. et al. // J. Mol. Liq. 2019. V. 284. P. 29. https://doi.org/10.1016/j.molliq.2019.03.163
  8. Tomiyama K., Kobayashi Y., Tsuda M., Higuchi T. // Jpn. J. Appl. Phys. 2011. V. 50. № 6R. P. 065502. https://doi.org/10.1143/JJAP.50.065502
  9. Ляшенко Л.П., Щербакова Л.Г., Белов Д.А., Кнотько А.В. // Неорган. материалы. 2009. Т. 45. № 5. С. 599.
  10. Muñoz I.C., Brown F., Durán-Muñoz H. et al. // Appl. Radiat. Isot. 2014. V. 90. P. 58. https://doi.org/10.1016/j.apradiso.2014.03.011
  11. Zhang J., Patel M.K., Wang Y.Q. et al. // J. Nucl. Mater. 2015. V. 459. P. 265. https://doi.org/10.1016/j.jnucmat.2015.01.057
  12. Cavalheiro A.A., Bruno J.C., Saeki M.J. et al. // J. Mater. Sci. 2008. V. 43. P. 602. https://doi.org/10.1007/s10853-007-1743-2
  13. Bian L., Song M., Zhou T. et al. // J. Rare Earths. 2009. V. 27. № 3. P. 461. https://doi.org/10.1016/S1002-0721(08)60270-7
  14. Zhang D.R., Liu H.L., Han Sh.Y., Piao W.X. // J. Ind. Eng. Chem. 2013. V.19. P.1838. http://dx.doi.org/10.1016/j.jiec.2013.02.029
  15. Shang Q.-H., Liu J.-N., Lang W.-Zh. et al. // Ind. Eng. Chem. Res. 2021. V. 60. P. 12811. https://doi.org/10.1021/acs.iecr.1c01568
  16. Ляшенко Л.П., Колбанев И.В., Щербакова Л.Г. и др. // Неорган. материалы. 2004. Т. 40. № 8. С. 955.
  17. Ляшенко Л.П., Щербакова Л.Г., Кулик Э.С. и др. // Неорган. материалы. 2015. Т. 51. № 2. С. 199.
  18. Ляшенко Л.П., Щербакова Л.Г., Карелин А.И. и др. // Неорган. материалы. 2016. Т. 52. № 5. С. 530.
  19. Shafi Sh.P., Hernden B.C., Cranswick L.M.D. et al. // Inorg. Chem. 2012. V. 51. P. 1269. https://doi.org/10.1021/ic201034x
  20. Kolitsch U., Tillimans E. // Acta Crystallogr. Sect. E. 2003. V. 59. P. i36. http://dx.doi.org/10.1107/S1600536803003544
  21. Bai H., He P., Chen J. et al. // Appl. Surf. Sci. 2017. V. 401. P. 218. https://doi.org/10.1016/j.apsusc.2017.01.019
  22. Zenou V.Y., Bakardjieva S. // Mater. Charact. 2018. V. 144. P. 287. https://doi.org/10.1016/j.matchar.2018.07.022
  23. Latini A., Cavallo C., Aldibaja F. K. et al. // J. Phys. Chem. C. 2013. V. 117. № 48. P. 25276. https://doi.org/10.1021/jp409813c
  24. Hirano M., Date K. // J. Am. Ceram. Soc. 2005. V. 88. P. 2604. https://doi.org/10.1111/j.1551-2916.2005.00447.x
  25. Kawamura K., Sekine M., Nishioka D. et al. // J. Phys. Soc. Jpn. 2019. V. 88. ID 054711. https://doi.org/10.7566/JPSJ.88.054711
  26. Кольцов С.И., Алесковский В.Б. // Журн. прикл. химии. 1967. Т. 40. № 4. С. 907.
  27. Кольцов С.И. // Журн. прикл. химии. 1969. Т. 42. № 5. С. 1023.
  28. Свешникова Г.В., Кольцов С.И., Алесковский В.Б. // Журн. прикл. химии. 1970. Т. 43. № 2. С. 430.
  29. Malygin A.A., Drozd V.E., Malkov A.A., Smirnov V.M. // Chem. Vap. Deposition. 2015. V. 21. P. 216. https://doi.org/10.1002/cvde.201502013
  30. Соснов Е.А., Малков А.А., Малыгин А.А. // Журн. прикл. химии. 2021. Т. 94. № 8. С. 967.
  31. Li J., Chai G., Wang X. // Int. J. Extrem. Manuf. 2023. V. 5. № 3. P. 032003. https://doi.org/10.1088/2631-7990/acd88e
  32. Mackus A.J.M., Schneider J.R., MacIsaac C. et al. // Chem. Mater. 2019. V 31. № 4. P. 1142. https://doi.org/10.1021/acs.chemmater.8b02878
  33. Oke J.A., Jen T.-C. // J. Mater. Res. Technol. 2022. V. 21. P. 2481. https://doi.org/10.1016/j.jmrt.2022.10.064
  34. Xu H., Akbari M.K., Kumar S. et al. // Sens. Actuators, B. Chem. 2021. V. 331. P. 129403. https://doi.org/10.1016/j.snb.2020.129403
  35. Lebedev M.S., Kruchinin V.N., Afonin M.Yu. et al. // Appl. Surf. Sci. 2019. V. 478. P. 690. https://doi.org/10.1016/j.apsusc.2019.01.288
  36. Han J.H., Nyns L., Delabie A. et al. // Chem. Mater. 2014. V. 26. № 3. P. 1404. https://doi.org/10.1021/cm403390j
  37. Nyns L., Lisoni J.G., Bosch G.V. den et al. // Phys. Status Solidi A. 2013. V. 211. P. 409. https://doi.org/10.1002/pssa.201330080
  38. Haukka S., Lakomaa E.L., Jylha O. et al. // Langmuir. 1993. V. 9. № 12. P. 3497. https://doi.org/10.1021/la00036a026
  39. Cheng H.-E., Chen C.-C. // J. Electrochem. Soc. 2008. V. 155. P. D604. https://doi.org/10.1149/1.2952659
  40. Хижняк Е.А., Шаяпов В.Р., Корольков И.В. и др. // Журн. структур. химии. 2025. Т. 66. № 2. С. 140578.
  41. Lakomaa E.-L., Haukka S., Suntola T. // Appl. Surf. Sci. 1992. V. 60–61. P. 742. https://doi.org/10.1016/0169-4332(92)90506-S
  42. Haukka S., Lakomaa E.-L., Suntola T. // Thin Solid Films. 1993. V. 225. P. 280. https://doi.org/10.1016/0040-6090(93)90170-T
  43. Ritala M., Leskelä M., Nykänen E. et al. // Thin Solid Films. 1993. V. 225. P. 288. https://doi.org/10.1016/0040-6090(93)90172-L
  44. Aarik J., Aidla A., Mändar H. et al. // Appl. Surf. Sci. 2001. V. 172. P. 148. https://doi.org/10.1016/S0169-4332(00)00842-4
  45. Finnie K.S., Triani G., Short K.T. et al. // Thin Solid Films. 2003. V. 440. № 1. P. 109. https://doi.org/10.1016/S0040-6090(03)00818-6
  46. Mitchell D.R.G., Attard D.J., Triani G. // Thin Solid Films. 2003. V. 441. № 1. P. 85. https://doi.org/10.1016/S0040-6090(03)00877-0
  47. Chiappim W., Testoni G.E., Lima J.S.B. et al. // Braz. J. Phys. 2016. V. 46. P. 56. https://doi.org/10.1007/s13538-015-0383-2
  48. Plakhotnyuk M.M., Schüler N., Shkodin E. et al. // Jpn. J. Appl. Phys. 2017. V. 56. № 8S2. ID 08MA11. https://doi.org/10.7567/JJAP.56.08MA11
  49. Atuchin V.V., Lebedev M.S., Korolkov I.V. et al. // J. Mater. Sci.: Mater. Electron. 2019. V. 30. № 1. P. 812. https://doi.org/10.1007/s10854-018-0351-z
  50. Aarik J., Aidla A., Kiisler A.-A. et al. // Thin Solid Films. 1997. V. 305. № 1. P. 270. https://doi.org/10.1016/S0040-6090(97)00135-1
  51. Петухова Д.Е., Викулова Е.С., Корольков И.В. и др. // Журн. структур. химии. 2023. Т. 64. № 3. С. 107605.
  52. Hansen P.-A., Fjellvåg H., Finstad T. G. et al. // J. Vac. Sci. Technol., A. 2015. V. 34. № 1. P. 01A130. https://doi.org/10.1116/1.4936389
  53. Aaltonen T., Alnes M., Nilsen O. et al. // J. Mater. Chem. 2010. V. 20. № 14. P. 2877. https://doi.org/10.1039/B923490J
  54. Kern W. Overview and Evolution of Silicon Wafer Cleaning Technology. In: Handbook of Silicon Wafer Cleaning Technology (Third Edition) / Eds. Reinhardt K.A., Kern W. William Andrew Publishing, 2018. P. 3–85. https://doi.org/10.1016/B978-0-323-51084-4.00001-0
  55. Blom R., Hammel A., Haaland A. et al. // J. Organomet. Chem. 1993. V. 462. № 1. P. 131. https://doi.org/10.1016/0022-328X(93)83350-5
  56. Humlíček J. Polarized Light and Ellipsometry. In: Handbook of Ellipsometry / Eds. Tompkins H.G., Irene E.A. Norwich, N.-Y.: William Andrew Publishing, 2005. P. 91.
  57. Holmes D.A. // Appl. Opt. 1967. V. 6. № 1. P. 168. https://doi.org/10.1364/AO.6.000168
  58. Collins R.W., Ferlauto A.S. Optical Physics of Materials. In: Handbook of Ellipsometry / Eds. Tompkins H.G., Irene E.A. Norwich, N.-Y.: William Andrew Publishing, 2005. Р. 93–235.
  59. Jellison G.E. Data Analysis for Spectroscopic Ellipsometry. In: Handbook of Ellipsometry / Eds. Tompkins H.G., Irene E.A. Norwich, N.-Y.: William Andrew Publishing, 2005. P. 96.
  60. Jellison G.E. Jr., Modine F.A. // Appl. Phys. Lett. 1996. V. 69. P. 3. https://doi.org/10.1063/1.118064
  61. Chen H., Shen W.Z. // Eur. Phys. J., B. 2005. V. 43. P. 7. https://doi.org/10.1140/epjb/e2005-00083-9
  62. Powder Diffraction File, release 2022, International Centre for Diffraction Data, Pennsylvania, USA.
  63. Лучинский Г.П. // Журн. физ. химии. 1966. Т. 40. С. 593.
  64. Петухова Д.Е., Сартакова А.В., Сухих Т.С. и др. // Журн. структур. химии. 2023. Т. 64. № 12. P. 123233.
  65. Nazarov D., Kozlova L., Rudakova A. et al. // Coatings. 2023. V. 13. P. 960. https://doi.org/10.3390/coatings13050960
  66. Puurunen R.L. // J. Appl. Phys. 2005. V. 97. № 12. P. 121301. https://doi.org/10.1063/1.1940727
  67. Han J.H., Nyns L., Delabie A. et al. // Chem. Mater. 2014. V. 26. № 3. P. 1404. https://doi.org/10.1021/cm403390j
  68. Ghosh M.K., Choi C.H. // Chem. Phys. Lett. 2008. V. 457. № 1. P. 69. https://doi.org/10.1016/j.cplett.2008.03.053
  69. Hu Z., Turner H. // J. Phys. Chem. B. 2006. V. 110. № 16. P. 8337. https://doi.org/10.1021/jp060367b
  70. Максумова А.М., Абдулагатов И.М., Палчаев Д.К. и др. // Журн. физ. химии. 2022. Т. 96. C. 1490.
  71. Максумова А.М., Бодалев И.С., Абдулагатов И.М. и др. // Журн. неорган. химии. 2024. Т. 69. № 1. С. 110.
  72. Sikervar V. Scandium(III) Chloride. In Encyclopedia of Reagents for Organic Synthesis / John Wiley & Sons Ltd., New York, 2001. https://doi.org/10.1002/047084289X.rn02386
  73. Klesko J.P., Rahman R., Dangerfield A. et al. // Chem. Mater. 2018. V. 30. № 3. P. 970. https://doi.org/10.1021/acs.chemmater.7b04790
  74. Luan Z., Maes E.M., Heide P.A.W., Zhao D. et al. // Chem. Mater. 1999. V. 11. № 12. P. 3680. https://doi.org/10.1021/cm9905141
  75. Hasegawa Y., Ayame A. // Catal. Today. 2001. V. 71. № 1. P. 177. https://doi.org/10.1016/S0920-5861(01)00428-X
  76. Moulder J.F. Handbook of X-ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data. Physical Electronics Division / Perkin-Elmer Corporation, Eden Prairie, 1992. P. 261.
  77. Иоффе М.С., Моравская Т.М., Ляшенко Л.П. и др. // Журн. структур. химии. 1980. Т. 21. № 2. С. 63.
  78. Rich B.B., Etinger-Geller Y., Ciatto G. et al. // Phys. Chem. Chem. Phys. 2021. V. 23. P. 6600. https://doi.org/10.1039/D1CP00341K
  79. Biesinger M.C., Lau L.W.M., Gerson A.R. et al. // Appl. Surf. Sci. 2010. V. 257. № 3. P. 887. https://doi.org/10.1016/j.apsusc.2010.07.086
  80. Chen S., Xie K., Dong D. et al. // J. Power Sources. 2015. V. 274. P. 718. https://doi.org/10.1016/j.jpowsour.2014.10.103
  81. Kaichev V.V., Ivanova E.V., Zamoryanskaya M.V. et al. // Eur. Phys. J. Appl. Phys. 2013. V. 64. № 1. P. 10302. https://doi.org/10.1051/epjap/2013130005
  82. Каичев В.В., Дубинин Ю.В., Смирнова Т.П. и др. // Журн. структур. химии. 2011. Т. 52. № 3. С. 495.
  83. Kyeremateng N.A., Vacandio F., Sougrati M.-T. et al. // J. Power Sources. 2013. V. 224. P. 269. https://doi.org/10.1016/j.jpowsour.2012.09.104
  84. Галахов Ф.Я. Диаграммы состояния систем тугоплавких оксидов / Справочник. Л.: Наука, 1987. 287 с.
  85. Kang Y.S., Zhang D.R. // Int. J. Nanosci. V. 5. 2006. № 2–3. P. 351. https://doi.org/10.1142/S0219581X06004462
  86. Putkonen M., Nieminen M., Niinistö J. et al. // Chem. Mater. 2001. V. 13. № 12. P. 4701. https://doi.org/10.1021/cm011138z
  87. Petukhova D.E., Kichay V.N., Lebedev M.S. // IEEE 24th International Conference of Young Professionals in Electron Devices and Materials (EDM). 2023. P. 40.
  88. Швец В.А., Кручинин В.Н., Гриценко В.А. // Опт. спектроскопия. 2017. Т. 123. № 5. С. 728.
  89. Belosludtsev A., Juškevičius K., Ceizaris L. et al. // Appl. Surf. Sci. 2018. V. 427. P. 312. https://doi.org/10.1016/j.apsusc.2017.08.068
  90. Liu M., Zhang L.D., He G. et al. // J. Appl. Phys. 2010. V. 108. P. 024102. https://doi.org/10.1063/1.3462467
  91. Lebedev M.S., Kruchinin V.N., Lebedeva M.I. et al. // Thin Solid Films. 2017. V. 642. P. 103. https://doi.org/10.1016/j.tsf.2017.09.014
  92. Etafa Tasisa Y., Kumar Sarma T., Krishnaraj R. et al. // Results Chem. 2024. V. 11. P. 101850. https://doi.org/10.1016/j.rechem.2024.101850
  93. Doyan A., Susilawati, Mahardika I.K. et al. // J. Phys.: Conf. Ser. 2022. V. 2165. P. 012009. https://doi.org/10.1088/1742-6596/2165/1/012009
  94. Liu G., Jin Y., He H. et al. // Thin Solid Films. 2010. V. 518. № 10. P. 2920. https://doi.org/10.1016/j.tsf.2009.11.004
  95. Xiong K., Zheng Q., Cheng Z. et al. // Eur. Phys. J., B. 2020. V. 93. № 201. P. 201. https://doi.org/10.1140/epjb/e2020-10368-x

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).