INVESTIGATION OF THE REDUCTION PROCESS OF URANIUM OXIDE UO3 TO UO2 FOR CERAMIC NUCLEAR FUEL PRODUCTION
- Autores: Ivanov N.P1,2, Shichalin O.O1,2, Tsygankov D.K1, Shurygin A.V1, Barkhudarov K.V1,3, Lembikov A.O1, Rastorguev V.L1, Azon S.A1, Buravlev I.Y.1, Tananaev I.G1,4, Papynov E.K1
-
Afiliações:
- Far Eastern Federal University
- Sakhalin State University
- Far Eastern Geological Institute, Far Eastern Branch of the Russian Academy of Sciences
- Kola Science Center, Tananaev Institute of Chemistry and Technology of Rare Elements and Mineral Raw Materials, Russian Academy of Sciences
- Edição: Volume 70, Nº 11 (2025)
- Páginas: 1677–1684
- Seção: НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ И НАНОМАТЕРИАЛЫ
- URL: https://journal-vniispk.ru/0044-457X/article/view/378196
- DOI: https://doi.org/10.7868/S3034560X25110259
- ID: 378196
Citar
Resumo
Palavras-chave
Sobre autores
N. Ivanov
Far Eastern Federal University; Sakhalin State University
Email: ivanov.np@dvfu.ru
Vladivostok, Russia; Yuzhno-Sakhalinsk, Russia
O. Shichalin
Far Eastern Federal University; Sakhalin State UniversityVladivostok, Russia; Yuzhno-Sakhalinsk, Russia
D. Tsygankov
Far Eastern Federal UniversityVladivostok, Russia
A. Shurygin
Far Eastern Federal UniversityVladivostok, Russia
K. Barkhudarov
Far Eastern Federal University; Far Eastern Geological Institute, Far Eastern Branch of the Russian Academy of SciencesVladivostok, Russia; Vladivostok,Russia
A. Lembikov
Far Eastern Federal UniversityVladivostok, Russia
V. Rastorguev
Far Eastern Federal UniversityVladivostok, Russia
S. Azon
Far Eastern Federal UniversityVladivostok, Russia
I. Buravlev
Far Eastern Federal UniversityVladivostok, Russia
I. Tananaev
Far Eastern Federal University; Kola Science Center, Tananaev Institute of Chemistry and Technology of Rare Elements and Mineral Raw Materials, Russian Academy of SciencesVladivostok, Russia; Apatity, Russia
E. Papynov
Far Eastern Federal UniversityVladivostok, Russia
Bibliografia
- Galashev A.Y., Zaikov Y.P. // Electrochim. Acta 2025. V. 518. P. 145823. https://doi.org/10.1016/j.electacta.2025.145823
- Youssef W.M., Hussein A.E.M., Taha M.H. et al. // Russ. J. Inorg. Chem. 2022. V. 67. N. 7. P. 1058. https://doi.org/10.1134/S0036023622070245
- Drankov A.N., Balybina V.A., Lembikov A.O. et al. // Russ. J. Inorg. Chem. 2025. V. 70. N. 3. P. 422. https://doi.org/10.1134/S0036023625600261
- Turanov A.N., Karandashev V.K., Khvostikov V.A. et al. // Russ. J. Inorg. Chem. 2022. V. 67. N. 12. P. 2045. https://doi.org/10.1134/S0036023622601416
- Papynov E.K., Shichalin O.O., Buravlev I.Y. et al. // J. Alloys Compd. 2021. V. 877. P. 160266. https://doi.org/10.1016/j.jallcom.2021.160266
- Papynov E.K., Shichalin O.O., Buravlev I.Y. et al. // J. Alloys Compd. 2021. V. 854. P. 155904. https://doi.org/10.1016/j.jallcom.2020.155904
- Papynov E.K., Shichalin O.O., Belov A.A. et al. // Nucl. Eng. Technol. 2020. V. 52. N. 8. P. 1756. https://doi.org/10.1016/j.net.2020.01.032
- Yu X., Yan C., Huang H. et al. // Ann. Nucl. Energy 2022. V. 171. P. 109044. https://doi.org/10.1016/j.anucene.2022.109044
- Vauchy R., Robisson A.-C., Audubert F. et al. // Ceram. Int. 2014. V. 40. N. 7. P. 10991. https://doi.org/10.1016/j.ceramint.2014.03.104
- Kim D.-J., Kim K.S., Kim D.S. et al. // Nucl. Eng. Technol. 2018. V. 50. N. 2. P. 253. https://doi.org/10.1016/j.net.2017.12.008
- Stepanov S.I., Boyarintsev A.V., Vazhenkov M.V. et al. // Russ. J. Gen. Chem. 2011. V. 81. N. 9. P. 1949. https://doi.org/10.1134/S1070363211090404
- Margueret A., Balice L., Popa K. et al. // J. Eur. Ceram. Soc. 2022. V. 42. N. 13. P. 6056. https://doi.org/10.1016/j.jeurceramsec.2022.05.070
- Papynov E.K., Shichalin O.O., Yu Mironenko A. et al. // IOP Conf. Ser. Mater. Sci. Eng. 2018. V. 307. N. 1. P. 012029. https://doi.org/10.1088/1757-899X/307/1/012029
- Papynov E.K., Shichalin O.O., Mironenko A.Y. et al. // Radiochemistry. 2018. V. 60. N. 4. P. 362. https://doi.org/10.1134/S1066362218040045
- Guillon O., Gonzalez-Julian J., Dargatz B. et al. // Adv. Eng. Mater. 2014. V. 16. N. 7. P. 830. https://doi.org/10.1002/adem.201300409
- Munir Z.A., Anselmi-Tamburini U., Ohyanagi M. // J. Mater. Sci. 2006. V. 41. N. 3. P. 763. https://doi.org/10.1007/s10853-006-6555-2
- Kulyako Y.M., Trofimov T.I., Samsonov M.D. et al. // Radiochemistry. 2015. V. 57. N. 2. P. 127. https://doi.org/10.1134/S1066362215020034
- Pilyushenko K.S., Vinokurov S.E., Kulyako Y.M. et al. // Radiochemistry. 2021. V. 63. N. 2. P. 156. https://doi.org/10.1134/S106636221020041
- Olsen A.M., Schwerdt I.J., Richards B. et al. // J. Nucl. Mater. 2018. V. 508. P. 574. https://doi.org/10.1016/j.jnucmat.2018.06.025
- Rousseau G., Desgranges L., Charlot F. et al. // J. Nucl. Mater. 2006. V. 355. N. 1-3. P. 10. https://doi.org/10.1016/j.jnucmat.2006.03.015
- Michak M., Ideker F.C., Kohlmann H. // Chem. A Eur. J. 2025. V. 31. N. 34. P. 1. https://doi.org/10.1002/chem.202500978
- Bazarkina E.F., Bauters S., Watier Y. et al. // Commun. Mater. 2025. V. 6. N. 1. https://doi.org/10.1038/s43246-025-00795-2
- Volgin M.I., Kulyukhin S.A., Nevolin Y.M. // Radiochemistry. 2023. V. 65. N. 6. P. 628. https://doi.org/10.1134/S1066362223060024
- Milena-Perez A., Rodriguez-Villagra N., Feria F. et al. // Prog. Nucl. Energy 2023. V. 165. P. 104914. https://doi.org/10.1016/j.pnucene.2023.104914
- Idriss H. // Surf. Sci. Rep. 2010. V. 65. N. 3. P. 67. https://doi.org/10.1016/j.surfrep.2010.01.001
- Guo X., Wu D., Xu H. et al. // J. Nucl. Mater. 2016. V. 478. P. 158. https://doi.org/10.1016/j.jnucmat.2016.06.014
- Mathubala G., Manikandan A., Arul Antony S. et al. // J. Mol. Struct. 2016. V. 1113. P. 79. https://doi.org/10.1016/j.molstruc.2016.02.032
- Elorrieta J.M., Bonales L.J., Rodriguez-Villagra N. et al. // Phys. Chem. Chem. Phys. 2016. V. 18. N. 40. P. 28209. https://doi.org/10.1039/c6cp03800j
Arquivos suplementares
