Феномен морского биопроспектинга

Обложка
  • Авторы: Русяев С.М.1, Орлов А.М.2,3,4,5,6
  • Учреждения:
    1. Магаданский филиал Всероссийского научно-исследовательского института рыбного хозяйства и океанографии – МагаданНИРО
    2. Институт океанологии им. П.П. Ширшова РАН
    3. Институт проблем экологии и эволюции им. А.Н. Северцова РАН
    4. Прикаспийский институт биологических ресурсов ДФИЦ РАН
    5. Дагестанский государственный университет
    6. Томский государственный университет
  • Выпуск: Том 84, № 3 (2023)
  • Страницы: 195-214
  • Раздел: Статьи
  • URL: https://journal-vniispk.ru/0044-4596/article/view/136445
  • DOI: https://doi.org/10.31857/S0044459623030065
  • EDN: https://elibrary.ru/BKLSOB
  • ID: 136445

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Биопроспектинг (биоразведка или биопоиск), оформившееся с конца 90-х годов прошлого столетия направление исследований, стремительно развивается. В последние десятилетия число научных публикаций по этой теме возросло многократно. Морской биопроспектинг, как часть общего направления, характеризуется крайне широким спектром исследований, большая часть которых все еще находится в фазе накопления информации о генетическом и биохимическом разнообразии биологического материала. С целью оценки потенциала данного направления выполнен обзор результатов проведенных в мире исследований. В его рамках осуществлена периодизация направления, показан масштаб, основные факторы, проблемы и экономический фундамент развития биопроспектинга. Осуществлен анализ и классификация методологических концепций. Выявлена роль информации и рассмотрены последствия развития биопроспектинга. Существенное отставание российской науки в морском биопроспектинге требует принятия серьезных шагов в развитии этого важного и перспективного направления: создания соответствующей инфраструктуры и новых форм организации исследований, консолидации научного сообщества, включения в процесс бизнеса и государственных структур.

Об авторах

С. М. Русяев

Магаданский филиал Всероссийского научно-исследовательского института
рыбного хозяйства и океанографии – МагаданНИРО

Email: orlov@vniro.ru
Россия, 685000, Магадан, ул. Портовая, 36/10

А. М. Орлов

Институт океанологии им. П.П. Ширшова РАН
; Институт проблем экологии и эволюции им. А.Н. Северцова РАН
; Прикаспийский институт биологических ресурсов ДФИЦ РАН
; Дагестанский государственный университет
; Томский государственный университет

Автор, ответственный за переписку.
Email: orlov@vniro.ru
Россия, 117218, Москва, Нахимовский просп., 36; Россия, 119071, Москва, Ленинский просп., 33; Россия, 367000, Махачкала, ул. М. Гаджиева, 45; Россия, 367000, Махачкала, ул. М. Гаджиева, 43-а; Россия, 634050, Томск, просп. Ленина, 36

Список литературы

  1. Ажгихин И.С., Шпаков Ю.Н., Кипиани Р.Е., Гандель В.Г., 1982. Морская фармация: Теория и практика нового направления в фармацевтической науке. Кишинев: Штиинца. 260 с.
  2. Бекяшев К.А., 2019. Будут ли морские генетические ресурсы объектом международно-правовой охраны? // Рыбное хозяйство. № 3. С. 48–54.
  3. Боброва Ю.В., Боржиа Ф., 2022. Проблемы международно-правового регулирования сохранения и устойчивого использования морского биоразнообразия в районах за пределами действия национальной юрисдикции // Журн. зарубежного законодательства и сравнительного правоведения. Т. 18. № 3. С. 37–47. https://doi.org/10.12737/jflcl.2022.034
  4. Бочарова Е.А., Кравцова В.Н., 2018. Лекарственные противоопухолевые препараты из морских организмов (обзор) // Уч. зап. Крымского фед. ун-та им. В.И. Вернадского. Биология. Химия. № 4 (70). С. 19–41.
  5. Головко Ю.С., Ивашкевич О.А., Головко А.С., 2012. Современные методы поиска новых лекарственных средств // Вестн. БГУ. Сер. 2. Химия. Биология. География. № 1. С. 7–15.
  6. Головко Ю.С., Ивашкевич О.А., Матулис В.Э., Гапоник П.Н., 2008. Основные направления компьютерного моделирования биологической активности молекул // Химические проблемы создания новых материалов и технологий. Минск: БГУ. С. 144–164.
  7. Гудимова Е.Н., Габриельсен Х.Л., Прищепа Б.Ф., 2010. Биопроспектинг и биотехнологии: подходы к освоению морских биологических ресурсов Арктики // Рыбное хозяйство. № 5. С. 31–35.
  8. Зиновьева Н.А., Фисинин В.И., Багиров В.А., Костюнина О.В., Гладырь Е.А., 2013. Биоресурсные центры как форма сохранения генетических ресурсов животных сельскохозяйственного назначения // Достижения науки и техники АПК. № 11. С. 40–41.
  9. Исаева М.П., 2022. Геномный биопроспектинг в изучении биоресурсной коллекции КММ ТИБОХ ДВО РАН: первые успехи и перспективы // Генетические ресурсы России: Сб. тез. пленарных докл. I научн. форума, Санкт-Петербург, 21–24 июня 2022 г. М.: Изд-во “Перо”. С. 15.
  10. Кивва К.К., Бобылев А.Б., Артемов Р.В., Мухин В.А., Мюге Н.С. и др., 2018. Наше видение будущего рыбохозяйственной науки // Современные проблемы и перспективы развития рыбохозяйственного комплекса. Мат-лы VI науч.-практ. конф. молодых учёных с междунар. участием. М.: ВНИРО. С. 117–122.
  11. Кудрявцева Н.М., Телегина Г.Ф., 2020. Барвинок в современной фармакотерапии (обзор литературы) // Педиатрический вестн. Южного Урала. № 1. С. 111–115.
  12. Макарьева Т.Н., Сильченко А.С., Кича А.А., Ляхова Е.Г., Колесникова С.А. и др., 2014. Поиск и выделение новых природных соединений из морских беспозвоночных, исследования их структур и биологических активностей // Вестн. ДВО РАН. № 1. С. 135–141.
  13. Несговорова Г.П., 2012. Биоинформатика: пути развития и перспективы // Информатика в науке и образовании. Новосибирск: Ин-т систем информатики им. А.П. Ершова СО РАН. С. 71–89.
  14. Орлова Т.И., Булгакова В.Г., Полин А.Н., 2015. Вторичные метаболиты морских микроорганизмов. I. Вторичные метаболиты морских актиномицетов // Антибиотики и химиотерапия. Т. 60. № 7–8. С. 47–59.
  15. Прогноз научно-технологического развития России: 2030. Биотехнологии, 2014 / Под. ред. Гохберга Л.М., Кирпичникова М.П. М.: Министерство образования и науки Российской Федерации, НИУ “Высшая школа экономики”. 48 с.
  16. Садовничий В.А., Акаев А.А., Коротаев А.В., Малков С.Ю., 2012. Моделирование и прогнозирование мировой динамики. М.: ИСПИ РАН. 359 с.
  17. Сазыкин Ю.О., Орехов С.Н., Чакалева И.И., Катлинский А.В. (ред.)., 2008. Биотехнология. Учеб. пособие для студ. высш. учеб. заведений. 3-е изд., стер. М.: Академия. 256 с.
  18. Седых А.Е., Галкина И.В., Галкин В.И., 2009. Программа “Xchem” – использование фрагментов химической структуры для поиска и моделирования химических и биологических свойств // Уч. зап. Казан. ун-та. Сер. Естеств. науки. Т. 151 (1). С. 80–92.
  19. Синеокий С.П., 2022. Развитие инфраструктуры в области микробных биоресурсов биотехнологического назначения // Генетические ресурсы России: Сб. тез. пленарных докл. I научн. форума, Санкт-Петербург, 21–24 июня 2022 г. М.: Изд-во “Перо”. С. 14.
  20. Стоник В.А., 2016. Некоторые результаты и тенденции развития исследований морских биологически активных метаболитов // Тихоокеанский мед. журн. № 4(66). С. 16–18.
  21. Трофимов Н.А., 2014. Исследование океана: перспективы морской биотехнологии // Наука за рубежом. № 28. С. 1–16.
  22. Шувалова Т.В., Афанасьев П.К., 2016. Международно-правовые проблемы определения режима доступа к морским генетическим ресурсам и распределения выгод от их использования // Рыбное хозяйство. № 3. С. 4–8.
  23. Abida H., Ruchaud S., Rios L., Humeau A., Probert I., et al., 2013. Bioprospecting marine plankton // Mar. Drugs. V. 11. P. 4594–4611. https://doi.org/10.3390/md11114594
  24. Adegboye M.F., Ojuederie O.B., Talia P.M., Babalola O.O., 2021. Bioprospecting of microbial strains for biofuel production: Metabolic engineering, applications, and challenges // Biotechnol. Biofuels. V. 14. Art. 5. https://doi.org/10.1186/s13068-020-01853-2
  25. Amaro H.M., Guedes A.C., Malcata F.X., 2011. Antimicrobial activities of microalgae: An invited review // Science Against Microbial Pathogens: Communicating Current Research and Technological Advances. V. 2 / Ed. Méndez-Vilas A. Badajoz: Formatex Research Center. P. 1272−1284.
  26. Artuso A., 2002. Bioprospecting, benefit sharing, and biotechnological capacity building // World Dev. V. 30. № 8. P. 1355–1368.
  27. Barten R., Wijffels R.H., Barbosa M.J., 2020. Bioprospecting and characterization of temperature tolerant microalgae from Bonaire // Algal Res. V. 50. Art. 102008. https://doi.org/10.1016/j.algal.2020.102008
  28. Beattie A.J., Hay M., Magnusson B. et al., 2011. Ecology and bioprospecting // Austral Ecol. V. 36. P. 341–356. https://doi.org/10.1111/j.1442-9993.2010.02170.x
  29. Benkendorff K., Davis A.R., Bremner J.B., 2001. Chemical defense in the egg masses of benthic invertebrates: An assessment of antibacterial activity in 39 mollusks and 4 polychaetes // J. Invertebr. Pathol. V. 78. № 2. P. 109–118. https://doi.org/10.1006/jipa.2001.5047
  30. Bharathi S., Saravanan D., Radhakrishnan M., Balagurunathan R., 2011. Bioprospecting of marine yeast with special reference to inulinase production // Int. J. ChemTech Res. V. 3. № 3. P. 1514–1519.
  31. Bhatia P., Chugh A., 2015. Role of marine bioprospecting contracts in developing access and benefit sharing mechanism for marine traditional knowledge holders in the pharmaceutical industry // Glob. Ecol. Conserv. V. 3. P. 176–187.
  32. Blunt J.W., Copp B.R., Keyzers R.A. et al., 2015. Marine natural products // Nat. Prod. Rep. V. 32. № 2. P. 116–211. https://doi.org/10.1039/c4np00144c
  33. Bohutskyi P., Liu K., Nasr L.K. et al., 2015. Bioprospecting of microalgae for integrated biomass production and phytoremediation of unsterilized wastewater and anaerobic digestion centrate // Appl. Microbiol. Biotechnol. V. 99. P. 6139–6154.
  34. Bolton J.J., Davies-Coleman M.T., Coyne V.E., 2013. Innovative processes and products involving marine organisms in South Africa // Afr. J. Mar. Sci. V. 35. № 3. P. 449–464. https://doi.org/10.2989/1814232X.2013.830990
  35. Brock T.D., Freeze H., 1969. Thermus aquaticus gen. n. and sp. n., a nonsporulating extreme thermophile // J. Bacteriol. V. 98. № 1. P. 289–297. https://doi.org/10.1128/jb.98.1.289-297.1969
  36. Bull A.T., Stach J.E.M., Ward A.C., Goodfellow M., 2005. Marine actinobacteria: perspectives, challenges, future directions // Antonie van Leeuwenhoek. V. 87. P. 65–79. https://doi.org/10.1007/s10482-004-6562-8
  37. Cahlíková L., Šafratová M., Hošťálková A. et al., 2020. Pharmacognosy and its role in the system of profile disciplines in pharmacy // Nat. Product Commun. V. 15. № 9. https://doi.org/10.1177/1934578X20945450
  38. Capon R.J., 2001. Marine bioprospecting – Trawling for treasure and pleasure // Eur. J. Org. Chem. № 4. P. 633–645.
  39. Cappello E., Nieri P., 2021. From life in the sea to the clinic: The marine drugs approved and under clinical trial // Life. V. 11. Art. 1390. https://doi.org/10.3390/life11121390
  40. Casas S.M., Comesaca P., Cao A., Villalba A., 2011. Comparison of antibacterial activity in the hemolymph of marine bivalves from Galicia (NW Spain) // J. Invertebr. Pathol. V. 106. P. 343–345. https://doi.org/10.1016/j.jip.2010.11.007
  41. Chen J., Xu L., Zhou Y., Han B., 2021. Natural products from actinomycetes associated with marine organisms // Mar. Drugs. V. 19. № 11. Art. 629. https://doi.org/10.3390/md19110629
  42. Chen P.-Y., McKittrick J., Meyers M.A., 2012. Biological materials: Functional adaptations and bioinspired designs // Prog. Mater. Sci. V. 57. P. 1492–1704.
  43. Cooper E.L., 2005. Bioprospecting: a CAM Frontier // eCAM. V. 2. № 1. P. 1–3. https://doi.org/10.1093/ecam/neh062
  44. Costello M.J., Chaudhary C., 2017. Marine biodiversity, biogeography, deep-sea gradients, and conservation // Curr. Biol. V. 27. № 11. P. R511–R527. https://doi.org/10.1016/j.cub.2017.04.060
  45. Demunshi Y., Chugh A., 2010. Role of traditional knowledge in marine bioprospecting // Biodivers. Conserv. V. 19. P. 3015–3033. https://doi.org/10.1007/s10531-010-9879-9
  46. Dewi A.S., Tarman K., Uria A.R., Greifswald E., 2008. Marine natural products: Prospects and impacts on the sustainable development in Indonesia // Proc. Indonesian Students’ Scientific Meeting, Delft, The Netherlands, May 2008. P. 54–63.
  47. Dhole N.P., Dar M.A., Pandit R.S., 2021. Recent advances in the bioprospection and applications of chitinolytic bacteria for valorization of waste chitin // Arch. Microbiol. V. 203. № 5. P. 1953–1969. https://doi.org/10.1007/s00203-021-02234-5
  48. Diggins F.W., 1999. The true history of the discovery of penicillin, with refutation of the misinformation in the literature // Brit. J. Biomed. Sci. V. 56. № 2. P. 83–93.
  49. Draaisma R.B., Wijffels R.H., Slegers P.E. et al., 2013. Food commodities from microalgae // Curr. Opin. Biotechnol. V. 24. P. 169–177.
  50. Duncan K., Haltli B., Gill K.A., Kerr R.G., 2014. Bioprospecting from marine sediments of New Brunswick, Canada: Exploring the relationship between total bacterial diversity and actinobacteria diversity // Mar. Drugs. V. 12. P. 899–925. https://doi.org/10.3390/md12020899
  51. Dutertre S., Lewis R.J., 2010. Use of venom peptides to probe ion channel structure and function // J. Biol. Chem. V. 285. P. 13315–13320.
  52. Efferth T., Banerjee M., Paul N.W. et al., 2016. Biopiracy of natural products and good bioprospecting practice // Phytomed. V. 23. № 2. P. 166–173. https://doi.org/10.1016/j.phymed.2015.12.006
  53. Egan S., Harder T., Burke C. et al., 2013. The seaweed holobiont: Understanding seaweed-bacteria interactions // FEMS Microbiol. Rev. V. 37. № 3. P. 462–476. https://doi.org/10.1111/1574-6976.12011
  54. Elissawy A.M., Soleiman Dehkordi E., Mehdinezhad N. et al., 2021. Cytotoxic alkaloids derived from marine sponges: A comprehensive review // Biomolecules. V. 11. № 2. Art. 258. https://doi.org/10.3390/biom11020258
  55. Fajarningsih N.D., 2012. An emerging marine biotechnology: Marine drug discovery // Squalen. V. 7. № 2. P. 89–98.
  56. Feller G., Gerday C., 2003. Psychrophilic enzymes: Hot topics in cold adaptation // Nat. Rev. Microbiol. V. 1. P. 200–208. https://doi.org/10.1038/nrmicro773
  57. Fenical W., Jensen P., 2006. Developing a new resource for drug discovery: Marine actinomycete bacteria // Nat. Chem. Biol. V. 2. P. 666–673. https://doi.org/10.1038/nchembio841
  58. Ferrer M., Golyshina O.V., Chernikova T.N. et al., 2005. Novel hydrolase diversity retrieved from a metagenome library of bovine rumen microflora // Environ. Microbiol. V. 7. P. 1996–2010. https://doi.org/10.1111/j.1462-2920.2005.00920.x
  59. Francis S.C., Rebello S., Mathachan Aneesh E. et al., 2021. Bioprospecting of gut microflora for plastic biodegradation // Bioengineered. V. 12. № 1. P. 1040–1053. https://doi.org/10.1080/21655979.2021.1902173
  60. Goodfellow M., Fiedler H.-P., 2010. A guide to successful bioprospecting: Informed by actinobacterial systematics // Antonie van Leeuwenhoek. V. 98. P. 119–142. https://doi.org/10.1007/s10482-010-9460-2
  61. Gonçalves C., Costa P.M., 2021. Cephalotoxins: A hotspot for marine bioprospecting? // Front. Mar. Sci. V. 8. Art. 647344. https://doi.org/10.3389/fmars.2021.647344
  62. Grant P., Mackie A., 1977. Drugs from the sea – fact or fantasy? // Nature. V. 267. P. 786–788.
  63. Greco G.R., Cinquegrani M., 2016. Firms plunge into the sea. Marine biotechnology industry, a first investigation // Front. Mar. Sci. V. 2. Art. 124. https://doi.org/10.3389/fmars.2015.00124
  64. Green D.W., Padula M.P., Santos J. et al., 2013. A therapeutic potential for marine skeletal proteins in bone regeneration // Mar. Drugs. V. 11. P. 1203–1220. https://doi.org/10.3390/md11041203
  65. Haefner B., 2003. Drugs from the deep: Marine natural products as drug candidates // DDT. V. 8. № 12. P. 536–544.
  66. Haque N., Parveen S., Tang T., Wei J., Huang Z., 2022. Marine natural products in clinical use // Mar. Drugs. V. 20. Art. 528. https://doi.org/10.3390/md20080528
  67. Harden-Davies H., 2016. Deep-sea genetic resources: New frontiers for science and stewardship in areas beyond national jurisdiction // Deep-Sea Res. II. Top. Stud. Oceanogr. V. 137. P. 504–513. https://doi.org/10.1016/j.dsr2.2016.05.005
  68. Haug T., Kjuul A.K., Stensvåg K. et al., 2002. Antibacterial activity in four marine crustacean decapods // Fish Shellfish Immunol. V. 12. № 5. P. 371–385. https://doi.org/10.1006/fsim.2001.0378
  69. He L., Chen J., Huang R., Huang Y., 2021. Legal challenges to the Antarctic Treaty System and the protection of China’s basic rights and interests in Antarctica // China Oceans L. Rev. V. 39. P. 51–76.
  70. Hossain A., Dave D., Shahidi F., 2020. Northern sea cucumber (Cucumaria frondosa): A potential candidate for functional food, nutraceutical, and pharmaceutical sector // Mar. Drugs. V. 18. № 5. Art. 274. https://doi.org/10.3390/md18050274
  71. Hu G.P., Yuan J., Sun L. et al., 2011. Statistical research on marine natural products based on data obtained between 1985 and 2008 // Mar. Drugs. V. 9. P. 514–525.
  72. Hunt B., Vincent A.C.J., 2006. Scale and sustainability of marine bioprospecting for pharmaceuticals // J. Human Environ. V. 35. № 2. P. 57–64.
  73. Innis M.A., Myambo K.B., Gelfand D.H., Brow M.A., 1988. DNA sequencing with Thermus aquaticus DNA polymerase and direct sequencing of polymerase chain reaction-amplified DNA // Proc. Natl. Acad. Sci. V. 85. № 24. P. 9436–9440. https://doi.org/10.1073/pnas.85.24.9436
  74. Ireland C.M., Copp B.R., Foster M.P. et al., 1993. Biomedical potential of marine natural products // Pharmaceutical and Bioactive Natural Products / Eds Attaway D.H., Zaborsky O.R. Boston: Springer. P. 1–43. https://doi.org/10.1007/978-1-4899-2391-2_1
  75. Johansen S.D., Emblem A., Karlsen B.O., Okkenhaug S., Hansen H. et al., 2010. Approaching marine bioprospecting in hexacorals by RNA deep sequencing // New Biotechnol. V. 27. P. 267–275. https://doi.org/10.1016/j.nbt.2010.02.019
  76. Kalinin V.I., Silchenko A.S., Avilov S.A., Stonik V.A., 2021. Progress in the studies of triterpene glycosides from sea cucumbers (Holothuroidea, Echinodermata) between 2017 and 2021 // Nat. Prod. Commun. V. 16. № 10. P. 1–24. https://doi.org/10.1177/1934578X211053934
  77. Kamyab E., Kellermann M.Y., Kunzmann A., Schupp P.J., 2020. Chemical biodiversity and bioactivities of saponins in Echinodermata with an emphasis on sea cucumbers (Holothuroidea) // YOUMARES 9 – The Oceans: Our Research, Our Future / Eds Jungblut S., Liebich V., Bode-Dalby M. Cham: Springer. P. 121–157. https://doi.org/10.1007/978-3-030-20389-4_7
  78. Kerr R.G., Kerr S.S., 1999. Marine natural products as therapeutic agents // Expert Opin. Ther. Path. V. 9. P. 1207–1222.
  79. Khan M.I., Shin J.H., Kim J.D., 2018. The promising future of microalgae: Current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products // Microb. Cell Fact. V. 17. № 1. Art. 36. https://doi.org/10.1186/s12934-018-0879-x
  80. Kiran G.S., Ramasamy P., Sekar S. et al., 2018. Synthetic biology approaches: Towards sustainable exploitation of marine bioactive molecules // Int. J. Biol. Macromol. V. 112. P. 1278–1288.
  81. Kodzius R., Gojobori T., 2015. Marine metagenomics as a source for bioprospecting // Mar. Genomics. V. 24. Pt. 1. P. 21–30. https://doi.org/10.1016/j.margen.2015.07.001
  82. Kubanek J., Jensen P.R., Keifer P.A. et al., 2003. Seaweed resistance to microbial attack: A targeted chemical defense against marine fungi // Proc. Natl. Acad. Sci. V. 100. № 12. P. 6916–6921.
  83. Kumari M., Padhi S., Sharma S. et al., 2021. Biotechnological potential of psychrophilic microorganisms as the source of cold-active enzymes in food processing applications // 3 Biotech. V. 11. Art. 479. https://doi.org/10.1007/s13205-021-03008-y
  84. Lalli C.M., Parsons T.R., 1997. Benthos // Biological Oceanography: An Introduction. Amsterdam: Elsevier. P. 177–195. https://doi.org/10.1016/b978-075063384-0/50063-3
  85. Lam K.S., 2006. Discovery of novel metabolites from marine actinomycetes // Curr. Opin. Microbiol. V. 9. P. 245–251. https://doi.org/10.1016/j.mib.2006.03.004
  86. Leal M.C., Calado R., Sheridan C. et al., 2013. Coral aquaculture to support drug discovery // Trends Biotechnol. V. 31. № 10. P. 555–561. https://doi.org/10.1016/j.tibtech.2013.06.004
  87. Leal M.C., Madeira C., Brandão C.A. et al., 2012a. Bioprospecting of marine invertebrates for new natural products – a chemical and zoogeographical perspective // Molecules. V. 17. P. 9842–9854. https://doi.org/10.3390/molecules17089842
  88. Leal M.C., Puga J., Serôdio J. et al., 2012b. Trends in the discovery of new marine natural products from invertebrates over the last two decades – where and what are we bioprospecting? // PLoS One. V. 7. № 1. Art. e30580. https://doi.org/10.1371/journal.pone.0030580
  89. Leary D., Vierros M., Hamon G. et al., 2009. Marine genetic resources: A review of scientific and commercial interest // Mar. Policy. V. 33. № 2. P. 183–194.
  90. Liu X., Ashforth E., Ren B. et al., 2010. Bioprospecting microbial natural product libraries from the marine environment for drug discovery // J. Antibiot. V. 63. № 8. P. 415–422. https://doi.org/10.1038/ja.2010.56
  91. Lorenzo F.D., Palmigiano A., Paciello I. et al., 2017. The deep-sea polyextremophile Halobacteroides lacunaris TB21 rough-type LPS: Structure and inhibitory activity towards toxic LPS // Mar. Drugs. V. 15. № 7. Art. 201. https://doi.org/10.3390/md15070201
  92. Lucia V., de, 2018. The concept of commons and marine genetic resources in areas beyond national jurisdiction // Marit. Saf. Secur. Law J. № 5. P. 1–21.
  93. Machida K., Abe T., Arai D. et al., 2014. Cinanthrenol A, an estrogenic steroid containing phenanthrene nucleus, from a marine sponge Cinachyrella sp. // Org. Lett. V. 16. P. 1539−1541. https://doi.org/10.1021/ol5000023
  94. Malve H., 2016. Exploring the ocean for new drug developments: Marine pharmacology // J. Pharm. Bioall. Sci. V. 8. P. 83–91. https://doi.org/10.4103/0975-7406.171700
  95. Martin D.F., Padilla G.M., 1973. Marine Pharmacognosy: Action of Marine Biotoxins at the Cellular Level. N.-Y.: Academic Press. 330 p.
  96. Martins A., Vieira H., Santos H.G.S., 2014. Marketed marine natural products in the pharmaceutical and cosmeceutical industries: Tips for success // Mar. Drugs. V. 12. P. 1066–1101. https://doi.org/10.3390/md12021066
  97. Mateo N., Nader W., Tamayo G., 2001. Bioprospecting // Encyclopedia of Biodiversity. V. 1. N.-Y.: Academic Press. P. 471–488.
  98. Meyers M.A., Chen P.-Y., Lin A.Y.-M., Seki Y., 2008. Biological materials: Structure and mechanical properties // Prog. Mater. Sci. V. 53. № 1. P. 1–206.
  99. Meyers M.A., Chen P.-Y., López M.I. et al., 2011. Biological materials: A materials science approach // J. Mech. Behav. Biomed. Mater. V. 4. P. 626–657.
  100. Min Jou W., Haegeman G., Ysebaert M., Fiers W., 1972. Nucleotide sequence of the gene coding for the bacteriophage MS2 coat protein // Nature. V. 237. P. 82–88. https://doi.org/10.1038/237082a0
  101. Nadar V.M., Manivannan S., Chinnaiyan R. et al., 2022. Review on marine sponge alkaloid, aaptamine: A potential antibacterial and anticancer drug // Chem. Biol. Drug Des. V. 99. № 1. P. 103–110. https://doi.org/10.1111/cbdd.13932
  102. National Research Council, 2002. Marine Biotechnology in the Twenty-First Century: Problems, Promise, and Products. Washington: The National Academies Press. 130 p. https://doi.org/10.17226/10340
  103. Newman D.J., Cragg G.M., Snader K.M., 2003. Natural products as sources of new drugs over the period 1981–2002 // J. Nat. Prod. V. 66. P. 1022–1037.
  104. Nickels P.P., 2020. Revisiting bioprospecting in the Southern Ocean in the context of the BBNJ negotiations // Ocean Dev. Int. Law. V. 51. № 3. P. 193–216. https://doi.org/10.1080/00908320.2020.1736773
  105. Núñez-Pons L., Shilling A., Verde C. et al., 2020. Marine terpenoids from polar latitudes and their potential applications in biotechnology // Mar. Drugs. V. 18. Art. 401. https://doi.org/10.3390/md18080401
  106. Paul S.I., Majumdar B.C., Ehsan R. et al., 2021. Bioprospecting potential of marine microbial natural bioactive compounds // J. Appl. Biotechnol. Rep. V. 8. № 2. P. 96–108. https://doi.org/10.30491/JABR.2020.233148.1232
  107. Penesyan A., Kjelleberg S., Egan S., 2010. Development of novel drugs from marine surface associated microorganisms // Mar. Drugs. V. 8. № 3. P. 438–459. https://doi.org/10.3390/md8030438
  108. Pereira C.R., Costa-Lotufo L.V., 2012. Bioprospecting for bioactives from seaweeds: Potential, obstacles and alternatives // Braz. J. Pharmacogn. V. 22. № 4. P. 894–905. https://doi.org/10.1590/S0102-695X2012005000077
  109. Proksch P., Edrada-Ebel R.A., Ebel R., 2003. Drugs from the sea – opportunities and obstacles // Mar. Drugs. V. 1. P. 5–17.
  110. Raja A., Prabakarana P., 2011. Actinomycetes and drug – an overview // Am. J. Drug Disc. Devel. V. 1. № 2. P. 75–84.
  111. Rizzo C., Lo Giudice A., 2020. The variety and inscrutability of polar environments as a resource of biotechnologically relevant molecules // Microorganisms. V. 8. № 9. Art. 1422. https://doi.org/10.3390/microorganisms8091422
  112. Rotter A., Barbier M., Bertoni F. et al., 2021. The essentials of marine biotechnology // Front. Mar. Sci. V. 8. Art. 629629. https://doi.org/10.3389/fmars.2021.629629
  113. Roumpeka D.D., Wallace R.J., Escalettes F. et al., 2017. A review of bioinformatics tools for bio-prospecting from metagenomic sequence data // Front. Genet. V. 8. Art. 23. https://doi.org/10.3389/fgene.2017.00023
  114. Salih A., Larkum A.W., Cronin T.W. et al., 2004. Biological properties of coral GFP-type proteins provide clues for engineering novel optical probes and biosensors // Proc. SPIE: Genetically Engineered and Optical Probes for Biomedical Applications II. V. 5329. P. 61–72. https://doi.org/10.1117/12.548926
  115. Santos-Gandelman J.F., Giambiagi-deMarval M., Oelemann W.M., Laport M.S., 2014. Biotechnological potential of sponge-associated bacteria // Curr. Pharm. Biotechnol. V. 15. № 2. P. 143–155. https://doi.org/10.2174/1389201015666140711115033
  116. Scannell J.W., Blanckley A., Boldon H., Warrington B., 2012. Diagnosing the decline in pharmaceutical R&D efficiency // Nat. Rev. Drug Discov. V. 11. P. 191–200.
  117. Schuhmacher A., Gassmann O., McCracken N., Hinder M., 2018. Open innovation and external sources of innovation. An opportunity to fuel the R&D pipeline and enhance decision making? // J. Translat. Med. V. 16. № 1. Art. 14. https://doi.org/10.1186/s12967-018-1499-2
  118. Silva A.F., da, Banat I.M., Giachini A.J., Robl D., 2021. Fungal biosurfactants, from nature to biotechnological product: Bioprospection, production and potential applications // Bioproc. Biosyst. Engin. V. 44. № 10. P. 2003–2034. https://doi.org/10.1007/s00449-021-02597-5
  119. Singh R.P., Reddy C.R., 2014. Seaweed-microbial interactions: Key functions of seaweed-associated bacteria // FEMS Microbiol. Ecol. V. 88. № 2. P. 213–230. https://doi.org/10.1111/1574-6941.12297
  120. Smith W.L., Wheeler W.C., 2006. Venom evolution widespread in fishes: A phylogenetic road map for the bioprospecting of piscine venoms // J. Hered. V. 97. № 3. P. 206–217. https://doi.org/10.1093/jhered/esj034
  121. Stach J.E.M., Maldonado L.A., Masson D.G. et al., 2003. Statistical approaches for estimating actinobacterial diversity in marine sediments // Appl. Environ. Microbiol. V. 69. P. 6189–6200.
  122. Stonik V.A., 2018. Some results of international collaboration of G.B. Elyakov Pacific Institute of Bioorganic Chemistry of the Far-Eastern Branch of the Russian Academy of Sciences // Vestnik FEB RAS. № 6S. P. 5–16. https://doi.org/10.25808/08697698.2018.202.6S.001
  123. Su Y., Song K., Zhang P. et al., 2017. Progress of microalgae biofuel’s commercialization // Renew. Sustain. Energy Rev. V. 74. P. 402–411.
  124. Sudarshan S., Krishnaveni K.N., Karthik R., Aanand S., 2021. Bioprospecting life saving drugs from jellyfish venom // Biotica Res. Today. V. 3. № 10. P. 920–924.
  125. Svenson J., 2013. MabCent: Arctic marine bioprospecting in Norway // Phytochem. Rev. V. 12. P. 567–578. https://doi.org/10.1007/s11101-012-9239-3
  126. Synnes M., 2007. Bioprospecting of organisms from the deep sea: scientific and environmental aspects // Clean Techn. Environ. Policy. V. 9. P. 53–59. https://doi.org/10.1007/s10098-006-0062-7
  127. Sysoev M., Grötzinger S.W., Renn D. et al., 2021. Bioprospecting of novel extremozymes from prokaryotes – The advent of culture-independent methods // Front. Microbiol. V. 12. Art. 630013. https://doi.org/10.3389/fmicb.2021.630013
  128. Takamatsu S., Hodges T.W., Rajbhandari I. et al., 2003. Marine natural products as novel antioxidant prototypes // J. Nat. Prod. V. 66. P. 605–608.
  129. Tramper J., Battershill C., Brandenburg W. et al., 2003. What to do in marine biotechnology? // Biomol. Eng. V. 20. P. 467–471. https://doi.org/10.1016/s1389-0344(03)00077-7
  130. Uma G., Babu M.M., Prakash V.S.G. et al., 2020. Nature and bioprospecting of haloalkaliphilics: A review // World J. Microbiol. Biotechnol. V. 36. № 5. Art. 66. https://doi.org/10.1007/s11274-020-02841-2
  131. Urbarova I., Karlsen B.O., Okkenhaug S. et al., 2012. Digital marine bioprospecting: Mining new neurotoxin drug candidates from the transcriptomes of cold-water sea anemones // Mar. Drugs. V. 10. P. 2265–2279. https://doi.org/10.3390/md10102265
  132. Vinothini S., Hussain A.J., Jayaprakashvel M., 2014. Bioprospecting of halotolerant marine bacteria from the Kelambakkam and Marakkanam Salterns, India for wastewater treatment of plant growth promotion // Biosci. Biotechnol. Res. Asia. V. 11. P. 313–321. https://doi.org/10.13005/bbra/1425
  133. Wang X., 2021. Genetic engineering-based approach to explore the bioactive potential of Pseudoalteromonas rubra S4059, a prodigiosin-producing marine bacterium. PhD Thesis. Lyngby: DTU Bioengineering. 163 p.
  134. Wenter D.A., 2003. Part of the human genome sequence // Science. V. 299. P. 1183–1184. https://doi.org/10.1126/science.299.5610.1183
  135. Wright J., 1987. Drugs from the sea – A sunken treasure? // OCEANS’87. Halifax, Canada: IEEE. P. 923–928. https://doi.org/10.1109/OCEANS.1987.1160707
  136. Yao H., Dao M., Imholt T. et al., 2010. Protection mechanisms of the iron-plated armor of a deep-sea hydrothermal vent gastropod // Proc. Natl. Acad. Sci. V. 107. P. 987–992.
  137. Zhang C., Gao M., Liu G. et al., 2022a. Relationship between skin scales and the main flow field around the shortfin mako shark Isurus oxyrinchus // Front. Bioeng. Biotechnol. V. 10. Art. 742437. https://doi.org/10.3389/fbioe.2022.742437
  138. Zhang H., Wu X., Quan L., Ao Q., 2022b. Characteristics of marine biomaterials and their applications in biomedicine // Mar. Drugs. V. 20. № 6. Art. 372. https://doi.org/10.3390/md20060372

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2.

Скачать (404KB)
3.

Скачать (213KB)
4.

Скачать (214KB)
5.

Скачать (883KB)

© С.М. Русяев, А.М. Орлов, 2023

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».