Биосоциальные эффекты окситоцина у позвоночных животных: от гормональных репродуктивных функций до парохиального альтруизма

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Окситоцин – древний нейропептид с широким спектром функциональных связей в организме позвоночных животных. На протяжении сотен миллионов лет эволюции функциональная роль окситоцина и его гомологов расширялась от первоначально обеспечивающей эффективную репродукцию до консолидации отношений партнеров в моногамных парах и семейных группах у кооперативно размножающихся видов и сложных кооперативных отношений в пределах социума с чертами парохиального альтруизма. В разных классах позвоночных животных расширение сферы действия окситоцина могло происходить параллельно, однако на сегодня наиболее полно спектр функциональных связей окситоцина прослежен у млекопитающих. Обзор посвящен краткому анализу функциональной роли окситоцина и его гомологов у позвоночных животных на основе современных исследований с акцентом на его биосоциальные эффекты.

Об авторах

А. М. Хрущова

Институт проблем экологии и эволюции им. А. Н. Северцова РАН

Email: krogovin@yandex.ru
Россия, Ленинский просп., 33, Москва, 119071

Н. Ю. Васильева

Институт проблем экологии и эволюции им. А. Н. Северцова РАН

Email: krogovin@yandex.ru
Россия, Ленинский просп., 33, Москва, 119071

К. А. Роговин

Институт проблем экологии и эволюции им. А. Н. Северцова РАН

Автор, ответственный за переписку.
Email: krogovin@yandex.ru
Россия, Ленинский просп., 33, Москва, 119071

Список литературы

  1. Гербек Ю.Э., Гулевич Р.Г., Шепелева Д.В., Гриневич В.В., 2016. Окситоцин: коэволюция человека и доместицированных животных // Вавиловский журн. генетики и селекции. Т. 20. № 2. С. 220–227. https://doi.org/10.18699/VJ16.145
  2. Панов Е.Н., 2001. Бегство от одиночества. М.: Лазурь. 323 с.
  3. Чернышева М.П., 2006. Гормоны животных. Введение в физиологическую эндокринологию. М.: Глаголъ. 296 с.
  4. Abreu M.S., Kulczykowska E., Cardoso S.C., André G.I., Morais M., et al., 2018. Nonapeptide levels in male cleaner fish brains during interactions with unfamiliar intra and interspecific partners // Behav. Ecol. Sociobiol. V. 72. P. 1–9. https://doi.org/10.1007/s00265-018-2537-z
  5. Acher R., Chauvet J., Chauvet M., Crepy D., 1968. Molecular evolution of neurohypophysial hormones: Comparison of the active principles of three bony fishes // Gen. Comp. Endocrinol. V. 11. P. 535–538.
  6. Albers H.E., 2012. The regulation of social recognition, social communication and aggression: Vasopressin in the social behavior neural network // Horm. Behav. V. 61. № 3. P. 283–292. https://doi.org/10.1016/j.yhbeh.2011.10.007
  7. Antunes-Rodrigues J., Favaretto A.L., Gutkowska J., McCann S.M., 1997. The neuroendocrine control of atrial natriuretic peptide release // Mol. Psychiatry. V. 2. P. 359–367. https://doi.org/10.1038/sj.mp.4000308
  8. Arakawa H., 2021. Dynamic regulation of oxytocin neuronal circuits in the sequential processes of prosocial behavior in rodent models // Curr. Res. Neurobiol. V. 2. Art. 100011. https://doi.org/10.1016/j.crneur.2021.100011
  9. Assad N.I., Pandey A.K., Sharma L.M., 2016. Oxytocin, functions, uses and abuses: A brief review // Theriogenol. Insight. V. 6. № 1. P. 1–17. https://doi.org/10.5958/2277-3371.2016.00001.2
  10. Barchi-Ferreira A.M., Osório F.L., 2021. Associations between oxytocin and empathy in humans: A systematic literature review // Psychoneuroendocrinology. V. 129. Art. 105268. https://doi.org/10.1016/j.psyneuen.2021.105268
  11. Barrett C.E., Arambula S.E., Young L.J., 2015. The oxytocin system promotes resilience to the effects of neonatal isolation on adult social attachment in female prairie voles // Transl. Psychiatry. V. 5. Art. e606. https://doi.org/10.1038/tp.2015.73
  12. Bartz J.A., Zaki J., Bolger N., Ochsner K.N., 2011. Social effects of oxytocin in humans: Context and person matter // Trends Сogn. Sci. V. 15. № 7. P. 301–309. https://doi.org/10.1016/j.tics.2011.05.002
  13. Bathgate R.A., Parry L.J., Fletcher T.P., Shaw G., Renfree M.B., et al., 1995. Comparative aspects of oxytocin-like hormones in marsupials // Adv. Exp. Med. Biol. V. 395. P. 639–655.
  14. Beery A.K., 2015. Antisocial oxytocin: Complex effects on social behavior // Curr. Opin. Behav. Sci. V. 6. P. 174–182. https://doi.org/10.1016/j.cobeha.2015.11.006
  15. Beery A.K., Kaufer D., 2015. Stress, social behavior, and resilience: Insights from rodents // Neurobiol. Stress. V. 1. P. 116–127. https://doi.org/10.1016/j.ynstr.2014.10.004
  16. Beery A.K., Lacey E.A., Francis D.D., 2008. Oxytocin and vasopressin receptor distributions in a solitary and a social species of tuco-tuco (Ctenomys haigi and Ctenomys sociabilis) // J. Comp. Neurol. V. 507. № 6. P. 1847–1859. https://doi.org/10.1002/cne.21638
  17. Benedetto A., di, Sun L., Zambonin C.G., Tamma R., Nico B., et al., 2014. Osteoblast regulation via ligand-activated nuclear trafficking of the oxytocin receptor // PNAS. V. 111. P. 16502–16507. https://doi.org/10.1073/pnas.1419349111
  18. Berton O., McClung C.A., DiLeone R.J., Krishnan V., Ren-thal W., et al., 2006. Essential role of BDNF in the mesolimbic dopamine pathway in social defeat stress // Science. V. 311. P. 864–868. https://doi.org/10.1126/science.1120972
  19. Bester-Meredith J.K., Young L.J., Marler C.A., 1999. Species diff erences in paternal behavior and aggressionюin Peromyscus and their associations with vasopressin immunoreactivity and receptors // Horm. Behav. V. 36. P. 25–38. https://doi.org/10.1006/hbeh.1999.1522
  20. Blume A., Bosch O.J., Miklos S., Torner L., Wales L., et al., 2008. Oxytocin reduces anxiety via ERK1/2 activation: Local effect within the rat hypothalamic paraventricular nucleus // Eur. J. Neurosci. V. 27. P. 1947–1956. https://doi.org/10.1111/j.1460-9568.2008.06184.x
  21. Bosch O.J., 2011. Maternal nurturing is dependent on her innate anxiety: The behavioral roles of brain oxytocin and vasopressin // Horm. Behav. V. 59. P. 202–212. https://doi.org/10.1016/j.yhbeh.2010.11.012
  22. Bosch O.J., 2013. Maternal aggression in rodents: Brain oxytocin and vasopressin mediate pup defense // Philos. Trans. R. Soc. B. V. 368. Art. 20130085. https://doi.org/10.1098/rstb.2013.0085
  23. Bosch O.J., Musch W., Bredewold R., Slattery D.A., Neumann I.D., 2007. Prenatal stress increases HPA axis activity and impairs maternal care in lactating female offspring: Implications for postpartum mood disorder // Psychoneuroendocrinology. V. 32. P. 267–278. https://doi.org/10.1016/j.psyneuen.2006.12.012
  24. Bosch O.J., Neumann I.D., 2012. Both oxytocin and vasopressin are mediators of maternal care and aggression in rodents: From central release to sites of action // Horm. Behav. V. 61. № 3. P. 293–303. https://doi.org/10.1016/j.yhbeh.2011.11.002
  25. Bosch O.J., Young L.J., 2018. Oxytocin and social relationships: From attachment to bond disruption // Curr. Top. Behav. Neurosci. V. 35. P. 97–117. https://doi.org/10.1007/7854_2017_10
  26. Brown C.A., Cardoso C., Ellenbogen M.A., 2016. A meta-analytic review of the correlation between peripheral oxytocin and cortisol concentrations // Front. Neuroendocrinol. V. 43. P. 19–27. https://doi.org/10.1016/j.yfrne.2016.11.001
  27. Caldwell H.K., 2018. Oxytocin and sex differences in behavior // Curr. Opin. Behav. Sci. V. 23. P. 13–20. https://doi.org/10.1016/j.cobeha.2018.02.002
  28. Camerer C.F., 2003. Behavioral Game Theory. Princeton: Princeton Univ. Press. 568 p.
  29. Cameron N.M., Shahrokh D., Del Corpo A., Dhir S.K., Szyf M., et al., 2008. Epigenetic programming of phenotypic variations in reproductive strategies in the rat through maternal care // J. Neuroendocrinol. V. 20. № 6. P. 795–801. https://doi.org/1111/j.1365-2826.2008.01725.x
  30. Cardoso S.C., Grutter A.S., Paula J.R., Andre G.I., Messias J.P., et al., 2015. Forebrain neuropeptide regulation of pair association and behavior in cooperating cleaner fish // Physiol. Behav. V. 145. P. 1–7. https://doi.org/10.1016/j.physbeh.2015.03.024
  31. Carter G.G., Wilkinson G.S., 2015. Intranasal oxytocin increases social grooming and food sharing in the common vampire bat Desmodus rotundus // Horm. Behav. V. 75. P. 150–153. https://doi.org/10.1016/j.yhbeh.2015.10.006
  32. Carter C.S., Grippo A.J., Pournajafi-Nazarloo H., Ruscio M.G., Porges S.W., 2008. Oxytocin, vasopressin and sociality // Progr. Brain Res. V. 170. P. 331–336. https://doi.org/10.1016/S0079-6123(08)00427-5
  33. Chen S., Xu H., Dong S., Xiao L., 2022. Morpho-electric properties and diversity of oxytocin neurons in paraventricular nucleus of hypothalamus in female and male mice // J. Neurosci. V. 42. № 14. P. 2885–2904. https://doi.org/10.1523/JNEUROSCI.2494-21.2022
  34. Corona G., Jannini E.A., Vignozzi L., Rastrelli G., Maggi M., 2012. The hormonal control of ejaculation // Nat. Rev. Urol. V. 9. P. 508–519. https://doi.org/10.1038/nrurol.2012.147
  35. Crespi B.J., 2016. Oxytocin, testosterone, and human social cognition // Biol. Rev. V. 91. № 2. P. 390–408. https://doi.org/10.1111/brv.12175
  36. Crockford C., Deschner T., Ziegler T.E., Wittig R.M., 2014. Endogenous peripheral oxytocin measures can give insight into the dynamics of social relationships: A review // Front. Behav. Neurosci. V. 8. Art. 68. https://doi.org/10.3389/fnbeh.2014.00068
  37. Crockford C., Wittig R.M., Langergraber K., Ziegler T.E., Zuberbühler K., Deschner T., 2013. Urinary oxytocin and social bonding in related and unrelated wild chimpanzees // Proc. Roy. Soc. B. Biol. Sci. V. 280. № 1755. Art. 20122765. https://doi.org/10.1098/rspb.2012.2765
  38. Cunha-Saraiva F., Balshine S., Gozdowska M., Kulczykowska E., Wagner R.H., Schaedelin F.C., 2019. Parental care and neuropeptide dynamics in a cichlid fish Neolamprologus caudopunctatus // Horm. Behav. V. 116. Art. 104576. https://doi.org/10.1016/j.yhbeh.2019.104576
  39. Cunningham J.P., Hereward J.P., Heard T.A., Barro P.J., de, West S.A., 2014. Bees at war: Interspecific battles and nest usurpation in stingless bees // Am. Nat. V. 184. P. 777–786. https://doi.org/10.1086/678399
  40. Dal Monte O., Noble P.L., Turchi J., Cummins A., Averbeck B.B., 2014. CSF and blood oxytocin concentration changes following intranasal delivery in macaque // PLoS One. V. 9. Art. e103677. https://doi.org/10.1371/journal.pone.0103677
  41. Deb S., Kashyap S., Lal J., 2023. Neuroendocrine regulation on fish reproduction // Emerging Trends in the Aquaculture Sector / Eds Neeraj Pathak, Mogalekar H.S. Delhi: Narendra Publishing House. P. 227–237.
  42. Donaldson Z.R., Young L.J., 2008. Oxytocin, vasopressin, and the neurogenetics of sociality // Science. V. 322. № 5903. P. 900–904. https://doi.org/10.1126/science.1158668
  43. Dreu C.K.W., de, 2012. Oxytocin modulates cooperation within and competition between groups: An integrative review and research agenda // Horm. Behav. V. 61. № 3. P. 419–428. https://doi.org/10.1016/j.yhbeh.2011.12.009
  44. Dreu C.K., de, Greer L.L., Handgraaf M.J., Shalvi S., Kleef G.A., van, et al., 2010. The neuropeptide oxytocin regulates parochial altruism in intergroup conflict among humans // Science. V. 328. P. 1408–1411. https://doi.org/10.1126/science.1189047
  45. Dreu C.K.W., de, Gross J., Fariña A., Ma Y., 2020. Group cooperation, carrying-capacity stress, and intergroup conflict // Trends Cogn. Sci. V. 24. P. 760–776. https://doi.org/10.1016/j.tics.2020.06.005
  46. Dulac C., O’Connell L.A., Wu Z., 2014. Neural control of maternal and paternal behaviors // Science. V. 345. № 6198. P. 765–770. https://doi.org/10.1126/science.1253291
  47. Dumais K.M., Veenema A.H., 2016. Vasopressin and oxytocin receptor systems in the brain: Sex differences and sex-specific regulation of social behavior // Front. Neuroendocrinol. V. 40. P. 1–23. https://doi.org/10.1016/j.yfrne.2015.04.003
  48. Elabd C., Basillais A., Beaupied H., Breuil V., Wagner N., et al., 2008. Oxytocin controls differentiation of human mesenchymal stem cells and reverses osteoporosis // Stem Cells. V. 26. № 9. P. 2399–2407. https://doi.org/10.1634/stemcells.2008-0127
  49. Elabd C., Cousin W., Upadhyayula P., Chen R.Y., Chooljian M.S., et al., 2014. Oxytocin is an age-specific circulating hormone that is necessary for muscle maintenance and regeneration // Nat. Commun. V. 5. № 1. Art. 4082. https://doi.org/10.1038/ncomms5082
  50. Eliava M., Melchior M., Knobloch-Bollmann H.S., Wahis J., Silva Gouveia M., da, et al., 2016. A new population of parvocellular oxytocin neurons controlling magnocellular neuron activity and inflammatory pain processing // Neuron. V. 89. № 6. P. 1291–1304. https://doi.org/10.1016/j.neuron.2016.01.041
  51. Elwood R.W., 1994. Temporal-based kinship recognition: A switch in time saves mine // Behav. Processes. V. 33. № 1–2. P. 15–24. https://doi.org/10.1016/0376-6357(94)90057-4
  52. Evans S.L., Dal Monte O., Noble P., Averbeck B.B., 2014. Intranasal oxytocin effects on social cognition: A critique // Brain Res. V. 1580. P. 69–77. https://doi.org/10.1016/j.brainres.2013.11.008
  53. Fahrbach S.E., Morrell J.I., Pfaff D.W., 1984. Oxytocin induction of shortlatency maternal behavior in nulliparous, estrogen-primed female rats // Horm. Behav. V. 18. P. 267–286. https://doi.org/10.1016/0018-506X(84)90016-3
  54. Feldman M.L., 2007. Some options to induce oviposition in turtles // Chelonian Conserv. Biol. V. 6. № 2. P. 313–320. https://doi.org/10.2744/1071-8443(2007)6[313:SOTI OI]2.0.CO;2
  55. Feldman R., 2012. Oxytocin and social affiliation in humans // Horm. Behav. V. 61. № 3. P. 380–391. https://doi.org/10.1016/j.yhbeh.2012.01.008
  56. Feldman R., 2016. The neurobiology of mammalian parenting and the biosocial context of human caregiving // Horm. Behav. V. 77. P. 3–17. https://doi.org/10.1016/j.yhbeh.2015.10.001
  57. Feldman R., Bakermans-Kranenburg M.J., 2017. Oxytocin: A parenting hormone // Curr. Opin. Psychol. V. 15. P. 13–18. https://doi.org/10.1016/j.copsyc.2017.02.011
  58. Ferguson J.K.W., 1941. A study of the motility of the intact uterus at term // Surg. Gynecol. Obstet. V. 73. P. 359–366.
  59. Ferguson J.N., Young L.J., Hearn E.F., Matzuk M.M., Insel T.R., Winslow J.T., 2000. Social amnesia in mice lacking the oxytocin gene // Nat. Genet. V. 25. № 3. P. 284–288. https://doi.org/10.1038/77040
  60. Festante F., Rayson H., Paukner A., Kaburu S.S., Toschi G., et al., 2021. Oxytocin promotes prosocial behavior and related neural responses in infant macaques at-risk for compromised social development // Dev. Cogn. Neurosci. V. 48. Art. 100950. https://doi.org/10.1016/j.dcn.2021.100950
  61. Fink J.W., McLeod B.J., Assinder S.J., Parry L.J., Nicholson H.D., 2005. Seasonal changes in mesotocin and localization of its receptor in the prostate of the brushtail possum (Trichosurus vulpecula) // Biol. Reprod. V. 72. № 2. P. 470–478. https://doi.org/10.1095/biolreprod.104.035006
  62. Finkenwirth C., Schaik C., van, Ziegler T.E., Burkart J.M., 2015. Strongly bonded family members in common marmosets show synchronized fluctuations in oxytocin // Physiol. Behav. V. 151. P. 246–251. https://doi.org/10.1016/j.physbeh.2015.07.034
  63. Francis S.M., Kirkpatrick M.G., Witt H., de, Jacob S., 2016. Urinary and plasma oxytocin changes in response to MDMA or intranasal oxytocin administration // Psychoneuroendocrinology. V. 74. P. 92–100. https://doi.org/10.1016/j.psyneuen.2016.08.011
  64. Fraser D., 1980. A review of the behavioural mechanism of milk ejection of the domestic pig // Appl. Anim. Ethol. V. 6. № 3. P. 247–255. https://doi.org/10.1016/0304-3762(80)90026-7
  65. Glowacki L., Lew-Levy S., 2022. How small-scale societies achieve large-scale cooperation // Curr. Opin. Psychol. V. 44. P. 44–48. https://doi.org/10.1016/j.copsyc.2021.08.026
  66. Goodson J.L., 2005. The vertebrate social behavior network: Evolutionary themes and variations // Horm. Behav. V. 48. P. 11–22. https://doi.org/10.1016/j.yhbeh. 2005.02.003
  67. Goodson J.L., 2008. Nonapeptides and the evolutionary patterning of sociality // Progress in Brain Research / Eds Neumann I.D., Landgraf R. Amsterdam: Elsevier. P. 3–15.
  68. Goodson J.L., 2013. Deconstructing sociality, social evolution and relevant nonapeptide functions // Psychoneuroendocrinology. V. 38. P. 465–478. https://doi.org/10.1016/j.psyneuen.2012.12.005
  69. Goodson J.L., Schrock S.E., Kingsbury M.A., 2015. Oxytocin mechanisms of stress response and aggression in a territorial finch // Physiol. Behav. V. 141. P. 154–163. https://doi.org/10.1016/j.physbeh.2015.01.016
  70. Goodson J.L., Schrock S.E., Klatt J.D., Kabelik D., Kingsbury M.A., 2009. Mesotocin and nonapeptide receptors promote estrildid flocking behavior // Science. V. 325. № 5942. P. 862–866. https://doi.org/10.1126/science.1174929
  71. Goodson J.L., Thompson R.R., 2010. Nonapeptide mechanisms of social cognition, behavior and species-specific social systems // Curr. Opin. Neurobiol. V. 20. № 6. P. 784–794. https://doi.org/10.1016/j.conb.2010.08.020
  72. Goodwin D., 1982. Estrildid Finches of the World. Ithaca, N.-Y.: Cornell Univ. Press. 328 p.
  73. Gozdowska M., Kleszczyńska A., Sokołowska E., Kulczykowska E., 2006. Arginine vasotocin (AVT) and isotocin (IT) in fish brain: Diurnal and seasonal variations // Comp. Biochem. Physiol. B. Biochem. Mol. Biol. V. 143. P. 330–334. https://doi.org/10.1016/j.cbpb.2005.12.004
  74. Grebe N.M., Sheikh A., Ohannessian L., Drea C.M., 2023. Effects of oxytocin receptor blockade on dyadic social behavior in monogamous and non-monogamous Eulemur // Psychoneuroendocrinology. V. 150. Art. 106044. https://doi.org/10.1016/j.psyneuen.2023.106044
  75. Grinevich V., Knobloch-Bollmann H.S., Eliava M., Busnelli M., Chini B., 2016. Assembling the puzzle: Pathways of oxytocin signaling in the brain // Biol. Psychiatry. V. 79. № 3. P. 155–164. https://doi.org/10.1016/j.biopsych.2015.04.013
  76. Gruber C.W., 2014. Physiology of invertebrate oxytocin and vasopressin neuropeptides // Exp. Physiol. V. 99. № 1. P. 55–61. https://doi.org/10.1113/expphysiol.2013.072561
  77. Hammock E.A.D., Young L.J., 2005. Microsatellite instability generates diversity in brain and sociobehavioral traits // Science. V. 308. P. 1630–1634. https://doi.org/10.1126/science.1111427
  78. Heinrichs M., Dawans B., von, Domes G., 2009. Oxytocin, vasopressin, and human social behavior // Front. Neuroendocrinol. V. 30. № 4. P. 548–557. https://doi.org/10.1016/j.yhbeh.2011.12.009
  79. Heller H., 1972. The effect of neurohypophyseal hormones on the female reproductive tract of lower vertebrates // Gen. Comp. Endocrinol. V. 3. P. 703–714. https://doi.org/10.1016/0016-6480(72)90200-6
  80. Herbeck Y.E., Eliava M., Grinevich V., MacLean E.L., 2022. Fear, love, and the origins of canid domestication: An oxytocin hypothesis // Compr. Psychoneuroendocrinol. V. 9. Art. 100100. https://doi.org/10.1016/j.cpnec.2021.100100
  81. Higashida H., 2016. Somato-axodendritic release of oxytocin into the brain due to calcium amplification is essential for social memory // J. Physiol. Sci. V. 66. P. 275–282. https://doi.org/10.1007/s12576-015-0425-0
  82. Hillerer K.M., Rebe S.O., Neuman I.D., Slatter D.A., 2011. Exposure to chronic pregnancy stress reverses peripartum-associated adaptations: implications for postpartum anxiety and mood disorders // Endocrinology. V. 152. P. 3930–3940. https://doi.org/10.1210/en.2011-1091
  83. Hurlemann R., Marsh N., 2017. Deciphering the modulatory role of oxytocin in human altruism // Rev. Neurosci. V. 28. № 4. P. 335–342. https://doi.org/10.1515/revneuro-2016-0061
  84. Insel T.R., Gelhard R., Shapiro L.E., 1991. The comparative distribution of forebrain receptors for neurohypophyseal peptides in monogamous and polygamous mice // Neuroscience. V. 43. P. 623–630. https://doi.org/10.1016/0306-4522(91)90321-E
  85. Insel T.R., Wang Z., Ferris C.F., 1994. Patterns of vasopressin receptor distribution associated with social organization in microtine rodents // J. Neurosci. V. 14. P. 5381–5392. https://doi.org/10.1523/JNEUROSCI.14-09-05381.1994
  86. Insel T.R., Young L.J., 2001. The neurobiology of attachment // Nat. Rev. Neurosci. V. 2. № 2. P. 129–136. https://doi.org/10.1038/35053579
  87. Jaeggi A.V., Schaik C.P., van, 2011. The evolution of food sharing in primates // Behav. Ecol. Sociobiol. V. 65. P. 2125–2140. https://doi.org/10.1007/s00265-011-1221-3
  88. Jankowski M., Broderick T.L., Gutkowska J., 2020. The role of oxytocin in cardiovascular protection // Front. Psychol. V. 11. Art. 2139. https://doi.org/10.3389/fpsyg.2020.02139
  89. Johnson Z.V., Walum H., Jamal Y.A., Xiao Y., Keebaugh A.C., et al., 2016. Central oxytocin receptors mediate mating-induced partner preferences and enhance correlated activation across forebrain nuclei in male prairie voles // Horm. Behav. V. 79. P. 8–17. https://doi.org/10.1016/j.yhbeh.2015.11.011
  90. Jurek B., Neumann I.D., 2018. The oxytocin receptor: From intracellular signaling to behavior // Physiol. Rev. V. 98. P. 1805–1908. https://doi.org/10.1152/physrev.00031.20179
  91. Kabelik D., Magruder D.S., 2014. Involvement of different mesotocin (oxytocin homologue) populations in sexual and aggressive behaviours of the brown anole // Biol. Lett. V. 10. Art. 20140566. https://doi.org/10.1098/rsbl.2014.0566
  92. Kalamatianos T., Faulkes C.G., Oosthuizen M.K., Poorun R., Bennett N.C., Coen C.W., 2010. Telencephalic binding sites for oxytocin and social organization: A comparative study of eusocial naked mole-rats and solitary cape mole-rats // J. Comp. Neurol. V. 518. № 10. P. 1792–1813. https://doi.org/10.1002/cne.22302
  93. Kavaliers M., Choleris E., 2017. Out-group threat responses, in-group bias, and nonapeptide involvement are conserved across vertebrates: (A comment on Bruintjes et al., “Out-group threat promotes within-group affiliation in a cooperative fish”) // Am. Nat. V. 189. P. 453–458. https://doi.org/10.1086/690838
  94. Kelly A.M., Goodson J.L., 2014. Social functions of individual vasopressin–oxytocin cell groups in vertebrates: What do we really know? // Front. Neuroendocrinol. V. 35. P. 512–529. https://doi.org/10.1016/j.yfrne.2014.04.005
  95. Kendrick K.M., Da Costa A.P., Broad K.D., Ohkura S., Guevara R., et al., 1997. Neural control of maternal behaviour and olfactory recognition of offspring // Brain Res. Bull. V. 44. № 4. P. 383–395. https://doi.org/10.1016/S0361-9230(97)00218-9
  96. Keverne E.B., Kendrick K.M., 1992. Oxytocin facilitation of maternal behavior in sheep // Oxytocin in Maternal, Sexual, and Social Behaviors / Eds Pedersen C.A., Caldwell J.D., Jirikowski G.F., Insel T.R. N.-Y.: New York Academy of Sciences. P. 83–101.
  97. King L.B., Walum H., Inoue K., Eyrich N.W., Young L.J., 2016. Variation in the oxytocin receptor gene predicts brain region-specific expression and social attachment // Biol. Psychiatry. V. 80. P. 160–169. https://doi.org/10.1016/j.biopsych.2015.12.008
  98. Klatt J.D., Goodson J.L., 2013a. Sex-specific activity and function of hypothalamic nonapeptide neurons during nest-building in zebra finches // Horm. Behav. V. 64. P. 818–824. https://doi.org/10.1016/j.yhbeh.2013.10.001
  99. Klatt J.D., Goodson J.L., 2013b. Oxytocin-like receptors mediate pair bonding in a socially monogamous songbird // Proc. Roy. Soc. B. Biol. Sci. V. 280. № 1750. Art. 20122396. https://doi.org/10.1098/rspb.2012.2396
  100. Kleszczyńska A., Sokołowska E., Kulczykowska E., 2012. Variation in brain arginine vasotocin (AVT) and isotocin (IT) levels with reproductive stage and social status in males of three-spined stickleback (Gasterosteus aculeatus) // Gen. Comp. Endocrinol. V. 175. P. 290–296. https://doi.org/10.1016/j.ygcen.2011.11.022
  101. Knobloch H.S., Charlet A., Hoffmann L.C., Eliava M., Khrulev S., et al., 2012. Evoked axonal oxytocin release in the central amygdala attenuates fear response // Neuron. V. 73. P. 553–566. https://doi.org/10.1016/j.neuron.2011.11.030
  102. Knobloch H.S., Grinevich V., 2014. Evolution of oxytocin pathways in the brain of vertebrates // Front. Behav. Neurosci. V. 8. Art. 31. https://doi.org/10.3389/fnbeh.2014.00031
  103. Koop S., Oster H., 2022. Eat, sleep, repeat – endocrine regulation of behavioural circadian rhythms // FEBS J. V. 289. № 21. P. 6543–6558. https://doi.org/10.1111/febs.16109
  104. Kulczykowska E., 2007. Arginine vasotocin and isotocin: towards their role in fish osmoregulation // Fish Osmoregulation / Eds Boldisserato B., Moncera J.M., Kapoor B.G. Boca Raton: CRC Press. P. 151–176.
  105. Lee M.R., Scheidweile K.B., Diao X.X., Akhlaghi F., Cummins A., et al., 2018. Oxytocin by intranasal and intravenous routes reaches the cerebrospinal fluid in rhesus macaques: Determination using a novel oxytocin assay // Mol. Psychiatry. V. 23. № 1. P. 115–122. https://doi.org/10.1038/mp.2017.27
  106. Lemoine S., Samuni L., Crockford C., Wittig R., 2022. Parochial cooperation in wild chimpanzees: A model to explain the evolution of parochial altruism // Philos. Trans. R. Soc. B. V. 377. Art. 20210149. https://doi.org/10.1098/rstb.2021.0149
  107. Leng G., Leng R.I., Ludwig M., 2022. Oxytocin – a social peptide? Deconstructing the evidence // Philos. Trans. R. Soc. B. V. 377. Art. 20210055. https://doi.org/10.1098/rstb.2021.0055
  108. Leng G., Pineda R., Sabatier N., Ludwig M., 2015. 60 Years of neuroendocrinology: The posterior pituitary, from Geoffrey Harris to our present understanding // J. Endocrinol. V. 226. № 2. P. 173–185. https://doi.org/10.1530/JOE-15-0087
  109. Leng G., Sabatier N., 2016. Measuring oxytocin and vasopressin: bioassays, immunoassays and random numbers // J. Neuroendocrinol. V. 28. P. 2–13. https://doi.org/10.1111/jne.12413
  110. Leng G., Sabatier N., 2017. Oxytocin – the sweet hormone? // Trends Endocrinol. Metabolism. V. 28. № 5. P. 365–376. https://doi.org/10.1016/j.tem.2017.02.007
  111. Leung C.H., Goode C.T., Young L.J., Maney D.L., 2009. Neural distribution of nonapeptide binding sites in two species of songbird // J. Comp. Neurol. V. 513. P. 197–208. https://doi.org/10.1002/cne.21947
  112. Li T., Wang P., Wang S.C., Wang Y.F., 2017. Approaches mediating oxytocin regulation of the immune system // Front. Immunol. V. 7. Art. 693. https://doi.org/10.3389/fimmu.2016.00693
  113. Li Y., Field P.M., Raisman G., 2005. Olfactory ensheathing cells and olfactory nerve fibroblasts maintain continuous open channels for regrowth of olfactory nerve fibres // Glia. V. 52. P. 245–251. https://doi.org/10.1002/glia.20241
  114. Lim M.M., Wang Z., Olazabal D.E., Ren X., Terwillger E.F., Young L.J., 2004. Enhanced partner preference in a promiscuous species by manipulating the expression of a single gene // Nature. V. 429. P. 754–757. https://doi.org/10.1038/nature02539
  115. Lindenberg S., 2006. Prosocial behavior, solidarity, and framing processes // Solidarity and Prosocial Behavior: An Integration of Sociological and Psychological Perspectives. Boston: Springer US. P. 23–44.
  116. Linnér A., Almgren M., 2020. Epigenetic programming – The important first 1000 days // Acta Paediatrica. V. 109. № 3. P. 443–452. https://doi.org/10.1111/apa.15050
  117. Lonstein J.S., Lévy F., Fleming A.S., 2015. Common and divergent psychobiological mechanisms underlying maternal behaviors in non-human and human mammals // Horm. Behav. V. 73. P. 156–185. https://doi.org/10.1016/j.yhbeh.2015.06.011
  118. Loth M.K., Donaldson Z.R., 2021. Oxytocin, dopamine, and opioid interactions underlying pair bonding: Highlighting a potential role for microglia // Endocrinology. V. 162. № 2. P. 1–16. https://doi.org/10.1210/endocr/bqaa223
  119. Love T.M., 2014. Oxytocin, motivation and the role of dopamine // Pharmacol. Biochem. Behavior. V. 119. P. 49–60. https://doi.org/10.1016/j.pbb.2013.06.011
  120. Lukas M., Toth I., Reber S.O., Slattery D.A., Veenema A.H., Neumann I.D., 2011. The neuropeptide oxytocin facilitates pro-social behavior and prevents social avoidance in rats and mice // Neuropsychopharmacology. V. 36. № 11. P. 2159–2168. https://doi.org/10.1038/npp.2011.95
  121. Luo L., Becker B., Geng Y., Zhao Z., Gao S., et al., 2017. Sex-dependent neural effect of oxytocin during subliminal processing of negative emotion faces // Neuroimage. V. 162. P. 127–137. https://doi.org/10.1016/j.neuroimage.2017.08.079
  122. Lupoli B., Johansson B., Uvnäs-Moberg K., Svennersten-Sjaunja K., 2001. Effect of suckling on the release of oxytocin, prolactin, cortisol, gastrin, cholecystokinin, somatostatin and insulin in dairy cows and their calves // J. Dairy Res. V. 68. № 2. P. 175–187. https://doi.org/10.1017/S0022029901004721
  123. Ma X., Zhao W., Luo R., Zhou F., Geng Y., et al., 2018. Sex-and context-dependent effects of oxytocin on social sharing // Neuroimage. V. 183. P. 62–72. https://doi.org/10.1016/j.neuroimage.2018.08.004
  124. MacDonald K., Feifel D., 2013. Helping oxytocin deliver: considerations in the development of oxytocin-based therapeutics for brain disorders // Front. Neurosci. V. 7. P. 42–44. https://doi.org/10.3389/fnins.2013.00035
  125. Madden J.R., Clutton-Brock T.H., 2011. Experimental peripheral administration of oxytocin elevates a suite of cooperative behaviours in a wild social mammal // Proc. Roy. Soc. B. Biol. Sci. V. 278. P. 1189–1194. https://doi.org/10.1098/rspb.2010.1675
  126. Magnone M.C., Bertolucci C., Piazza F., Foà A., 2003. Daily and circadian rhythms of neurotransmitters and related compounds in the hypothalamic suprachiasmatic nuclei of a diurnal vertebrate // Brain Res. V. 973. № 1. P. 115–121. https://doi.org/10.1016/S0006-8993(03)02567-8
  127. Majolo B., Aureli F., 2016. Within-group behavioural consequences of between-group conflict: A prospective review // Proc. Roy. Soc. B. Biol. Sci. V. 283. Art. 20161567. https://doi.org/10.1098/rspb.2016.1567
  128. Mann P.E., Bridges R.S., 2001. Lactogenic hormone regulation of maternal behavior // Prog. Brain Res. V. 133. P. 251–262. https://doi.org/10.1016/S0079-6123(01)33019-4
  129. Marlin B.J., Mitre M., D’amour J.A., Chao M.V., Froemke R.C., 2015. Oxytocin enables maternal behaviour by balancing cortical inhibition // Nature. V. 520. № 7548. P. 499–504. https://doi.org/10.1038/nature14402
  130. Marsh N., Marsh A.A., Lee M.R., Hurlemann R., 2021. Oxytocin and the neurobiology of prosocial behavior // Neuroscientist. V. 27. № 6. P. 604–619. https://doi.org/10.1177/10738584209601
  131. Matsumoto M., Yoshida M., Jayathilake B.W., Inutsuka A., Nishimori K., et al., 2021. Indispensable role of the oxytocin receptor for allogrooming toward socially distressed cage mates in female mice // J. Neuroendocrinol. V. 33. № 6. Art. e12980. https://doi.org/10.1111/jne.12980
  132. Matthiesen A.S., Ransjö-Arvidson A.B., Nissen E., Uvnäs-Moberg K., 2001. Postpartum maternal oxytocin release by newborns: Effects of infant hand massage and sucking // Birth. V. 28. № 1. P. 13–19. https://doi.org/10.1046/j.1523-536x.2001.00013.x
  133. McGraw L., Székely T., Young L.J., 2010. Pair bonds and parental behaviour // Social Behaviour: Genes, Ecology and Evolution / Eds Székely T., Moore A.J., Komdeur J. Cambridge: Cambridge Univ. Press. P. 271–301.
  134. McQuaid R.J., McInnis O.A., Paric A., Al-Yawer F., Matheson K., Anisman H., 2016. Relations between plasma oxytocin and cortisol: The stress buffering role of social support // Neurobiol. Stress. V. 3. P. 52–60. https://doi.org/10.1016/j.ynstr.2016.01.001
  135. Morhenn V., Beavin L.E., Zak P.J., 2012. Massage increases oxytocin and reduces adrenocorticotropin hormone in humans // Altern. Ther. Health Med. V. 18. № 6. P. 11–18.
  136. Nagasawa M., Mitsui S., En S., Ohtani N., Ohta M., et al., 2015. Social evolution. Oxytocin-gaze positive loop and the coevolution of human-dog bonds // Science. V. 348. P. 333–336. https://doi.org/10.1126/science.1261022
  137. Neumann I.D., 2002. Involvement of the brain oxytocin system in stress coping: Interactions with the hypothalamo-pituitaryadrenal axis // Prog. Brain Res. V. 139. P. 147–162. https://doi.org/10.1016/S0079-6123(02)39014-9
  138. Neumann I.D., 2009. The advantage of social living: Brain neuropeptides mediate the beneficial consequences of sex and motherhood // Front. Neuroendocrinol. V. 30. P. 483–496. https://doi.org/10.1016/j.yfrne.2009.04.012
  139. Neumann I.D., Kromer S.A., Bosch O.J., 2005. Effects of psycho-social stress during pregnancy on neuroendocrine and behavioural parameters in lactation depend on the genetically determined stress vulnerability // Psychoneuroendocrinology. V. 30. P. 791–806. https://doi.org/10.1016/j.psyneuen.2005.03.008
  140. Neumann I.D., Torner L., Wigger A., 1999. Brain oxytocin: Differential inhibition of neuroendocrine stress responses and anxiety-related behaviour in virgin, pregnant and lactating rats // Neuroscience. V. 95. P. 567–575. https://doi.org/10.1016/S0306-4522(99)00433-9
  141. Numan M., 2014. Neurobiology of Social Behavior: Toward an Understanding of the Prosocial and Antisocial Brain. L.; N.-Y.: Academic Press. 341p.
  142. Numan M., Young L.J., 2016. Neural mechanisms of mother–infant bonding and pair bonding: Similarities, differences, and broader implications // Horm. Behav. V. 77. P. 98–112. https://doi.org/10.1016/j.yhbeh.2015.05.01
  143. O’Connell L.A., Hofmann H.A., 2011. The vertebrate mesolimbic reward system and social behavior network: A comparative synthesis // J. Comp. Neurol. V. 519. P. 3599–3639. https://doi.org/10.1002/cne.22735
  144. O’Connell L.A., Matthews B.J., Hofmann H.A., 2012. Isotocin regulates paternal care in a monogamous cichlid fish // Horm. Behav. V. 61. № 5. P. 725–733. https://doi.org/10.1016/j.yhbeh.2012.03.009
  145. O’Connor C.M., Marsh-Rollo S.E., Aubin-Horth N., Balshine S., 2016. Species-specific patterns of nonapeptide brain gene expression relative to pair-bonding behavior in grouping and non-grouping cichlids // Horm. Behav. V. 80. P. 30–38. https://doi.org/10.1016/j.yhbeh.2015.10.015
  146. Odendaal J.S., Meintjes R.A., 2003. Neurophysiological correlates of affiliative behaviour between humans and dogs // Vet. J. V. 165. № 3. P. 296–301. https://doi.org/10.1016/S1090-0233(02)00237-X
  147. Oettl L.L., Kelsch W., 2017. Oxytocin and Olfaction // Behavioral Pharmacology of Neuropeptides: Oxytocin. Current Topics in Behavioral Neurosciences / Eds Hurlemann R., Grinevich V.V. Cham: Springer. P. 55–75. https://doi.org/10.1007/7854_2017_8
  148. Oldfield R.G., Hofmann H.A., 2011. Neuropeptide regulation of social behavior in a monogamous cichlid fish // Physiol. Behav. V. 102. № 3–4. P. 296–303. https://doi.org/10.1016/j.physbeh.2010.11.022
  149. Oliveira V.E.D.M., Lukas M., Wolf H.N., Durante E., Lorenz A., et al., 2021. Oxytocin and vasopressin within the ventral and dorsal lateral septum modulate aggression in female rats // Nat. Commun. V. 12. № 1. Art. 2900. https://doi.org/10.1038/s41467-021-23064-5
  150. Ophir A.G., Gessel A., Zheng D.J., Phelps S.M., 2012. Oxytocin receptor density is associated with male mating tactics and social monogamy // Horm. Behav. V. 61. № 3. P. 445–453. https://doi.org/10.1016/j.yhbeh.2012.01.007
  151. Ophir A.G., Phelps S.M., Sorin A.B., Wolff J.O., 2008. Social but not genetic monogamy is associated with greater breeding success in prairie voles // Anim. Behaviour. V. 75. № 3. P. 1143–1154. https://doi.org/10.1016/j.anbehav.2007.09.022
  152. Parker K.J., Buckmaster C.L., Schatzberg A.F., Lyons D.M., 2005. Intranasal oxytocin administration attenuates the ACTH stress response in monkeys // Psychoneuroendocrinology. V. 30. P. 924–929. https://doi.org/10.1016/j.psyneuen.2005.04.002
  153. Pedersen A., Tomaszycki M.L., 2012. Oxytocin antagonist treatments alter the formation of pair relationships in zebra finches of both sexes // Horm. Behav. V. 62. P. 113–119. https://doi.org/10.1016/j.yhbeh.2012.05.009
  154. Pedersen C.A., Ascher J.A., Monroe Y.L., Prange A.J., 1982. Oxytocin induces maternal behavior in virgin female rats // Science. V. 216. P. 648–650. https://doi.org/10.1126/science.7071605
  155. Pedersen C.A., Prange A.J., 1985. Oxytocin and mothering behavior in the rat // Pharmacol. Ther. V. 28. P. 287–302. https://doi.org/10.1016/0163-7258(85)90056-7
  156. Pisor A.C., Ross C.T., 2023. Parochial altruism: What it is and why it varies // Evol. Hum. Behav. V. 45. № 1. Р. 2–12. https://doi.org/10.1016/j.evolhumbehav.2023.06.005
  157. Priyadarshi H., Das R., Singh A.A., Patel A.B., Pandey P.K., 2021. Hormone manipulation to overcome a major barrier in male catfish spawning: The role of oxytocin augmentation in inducing voluntary captive spawning // Aquac. Res. V. 52. № 1. P. 51–64. https://doi.org/10.1111/are.14869
  158. Qin J., Feng M., Wang C., Ye Y., Wang P.S., Liu C., 2009. Oxytocin receptor expressed on the smooth muscle mediates the excitatory effect of oxytocin on gastric motility in rats // Neurogastroenterol. Motil. V. 21. P. 430–438. https://doi.org/10.1111/j.1365-2982.2009.01282.x
  159. Quintana D.S., Guastella A.J., 2020. An allostatic theory of oxytocin // Trends Cogn. Sci. V. 24. P. 515–528. https://doi.org/10.1016/j.tics.2020.03.008
  160. Radford A.N., Majolo B., Aureli F., 2016. Within-group behavioural consequences of between-group conflict: A prospective review // Proc. Roy. Soc. B. Biol. Sci. V. 283. Art. 20161567. https://doi.org/10.1098/rspb.2016.1567
  161. Rand D.G., 2016. Cooperation, fast and slow meta-analytic evidence for a theory of social heuristics and self-interested deliberation // Psychol. Sci. V. 27. P. 1192–1206. https://doi.org/10.1177/0956797616654455
  162. Reddon A.R., O’Connor C.M., Marsh-Rollo S.E., Balshine S., 2012. Effects of isotocin on social responses in a cooperatively breeding fish // Anim. Behav. V. 84. P. 753–760. https://doi.org/10.1016/j.anbehav.2012.07.021
  163. Reddon A.R., O’Connor C.M., Marsh-Rollo S.E., Balshine S., Gozdowska M., Kulczykowska E., 2015. Brain nonapeptide levels are related to social status and affiliative behaviour in a cooperatively breeding cichlid fish // R. Soc. Open Sci. V. 2. Art. 140072. https://doi.org/10.1098/rsos.140072
  164. Reimers L., Diekhof E.K., 2015. Testosterone is associated with cooperation during intergroup competition by enhancing parochial altruism // Front. Neurosci. V. 9. Art. 183. https://doi.org/10.3389/fnins.2015.00183
  165. Ren D., Lu G., Moriyama H., Mustoe A.C., Harrison E.B., French J.A., 2015. Genetic diversity in oxytocin ligandsand receptors in new world monkeys // PLoS One. V. 10. Art. e0125775. https://doi.org/10.1371/journal.pone.0125775
  166. Rilling J.K., Young L.J., 2014. The biology of mammalian parenting and its effect on offspring social development // Science. V. 345. P. 771–776. https://doi.org/10.1126/science.1252723
  167. Ring R.H., Malberg J.E., Potestio L., Ping J., Boikess S., et al., 2006. Anxiolytic-like activity of oxytocin in male mice: Behavioral and autonomic evidence, therapeutic implications // Psychopharmacology (Berl). V. 185. P. 218–225. https://doi.org/10.1007/s00213-005-0293-z
  168. Romero T., Konno A., Nagasawa M., Hasegawa T., 2019. Oxytocin modulates responses to inequity in dogs // Physiol. Behav. V. 201. P. 104–110. https://doi.org/10.1016/j.physbeh.2018.12.023
  169. Romero T., Nagasawa M., Mogi K., Hasegawa T., Kikusui T., 2014. Oxytocin promotes social bonding in dogs // Proc. Natl Acad. Sci. V. 111. № 25. P. 9085–9090. https://doi.org/10.1073/pnas.1322868111
  170. Rosenblatt J.S., 2003. Outline of the evolution of behavioral and nonbehavioral patterns of parental care among the vertebrates: Critical characteristics of mammalian and avian parental behavior // Scand. J. Psychol. V. 44. P. 265–271. https://doi.org/10.1111/1467-9450.00344
  171. Ross A.P., McCann K.E., Larkin T.E., Song Z., Grieb Z.A., et al., 2019. Sex-dependent effects of social isolation on the regulation of arginine-vasopressin (AVP) V1a, oxytocin (OT) and serotonin (5HT) 1a receptor binding and aggression // Horm. Behav. V. 116. Art. 104578. https://doi.org/10.1016/j.yhbeh.2019.104578
  172. Ross H.E., Young L.J., 2009. Oxytocin and the neural mechanisms regulating social cognition and affiliative behavior // Front. Neuroendocrinol. V. 30. № 4. P. 534–547. https://doi.org/10.1016/j.yfrne.2009.05.004
  173. Rusch H., Gavrilets S., 2020. The logic of animal intergroup conflict: A review // J. Econ. Behav. Organ. V. 178. P. 1014–1030. https://doi.org/10.1016/j.jebo.2017.05.004
  174. Russell J.A., Leng G., Douglas A.J., 2003. The magnocellular oxytocin system, the fount of maternity: adaptation in pregnancy // Front. Neuroendocrinol. V. 24. P. 27–61. https://doi.org/10.1016/s0091-3022(02)00104-8
  175. Rzasa J., Ewy Z., 1970. Effect of vasotocin and oxytocin on oviposition in the hen // J. Reprod. Fertil. V. 21. P. 549–550. https://doi.org/10.1530/jrf.0.0210549
  176. Samuni L., Preis A., Deschner T., Crockford C., Wittig R.M., 2018. Reward of labor coordination and hunting success in wild chimpanzees // Commun. Biol. V. 1. P. 1–9. https://doi.org/10.1038/s42003-018-0142-3
  177. Samuni L., Preis A., Mundry R., Deschner T., Crockford C., Wittig R.M., 2017. Oxytocin reactivity during intergroup conflict in wild chimpanzees // Proc. Natl Acad. Sci. USA. V. 114. P. 268–273. https://doi.org/10.1073/pnas.1616812114
  178. Santoso P., Nakata M., Ueta Y., Yada T., 2018. Suprachiasmatic vasopressin to paraventricular oxytocin neurocircuit in the hypothalamus relays light reception to inhibit feeding behavior // Am. J. Physiol. Endocrinol. Metab. V. 315. № 4. P. E478–E488. https://doi.org/10.1152/ajpendo.00338.2016
  179. Savaskan E., Ehrhardt R., Schulz A., Walter M., Schächinger H., 2008. Post-learning intranasal oxytocin modulates human memory for facial identity // Psychoneuroendocrinology. V. 33. № 3. P. 368–374. https://doi.org/10.1016/j.psyneuen.2007.12.004
  180. Scatliffe N., Casavant S., Vittner D., Cong X., 2019. Oxytocin and early parent-infant interactions: A systematic revie // Int. J. Nurs. Sci. V. 6. № 4. P. 445–453. https://doi.org/10.1016/j.ijnss.2019.09.009
  181. Schorscher-Petcu A., Sotocinal S., Ciura S., Dupré A., Ritchie J., et al., 2010. Oxytocin-induced analgesia and scratching are mediated by the vasopressin-1A receptor in the mouse // J. Neurosci. V. 30. № 24. P. 8274–8284. https://doi.org/10.1523/JNEUROSCI.1594-10.2010
  182. Shamay-Tsoory S.G., Abu-Akel A., 2016. The social salience hypothesis of oxytocin // Biol. Psychiatry. V. 79. № 3. P. 194–202. https://doi.org/10.1016/j.biopsych.2015.07.020
  183. Shi Y., Liu J., Hu Z., Gao S., 2020. Opposing sex-dependent effects of oxytocin on the perception of gaze direction // Psychopharmacology. V. 237. P. 869–876. https://doi.org/10.1007/s00213-019-05423-9
  184. Slattery D.A., Neumann I.D., 2010. Chronic icv oxytocin attenuates the pathological high anxiety state of selectively bred Wistar rats // Neuropharmacology. V. 58. P. 56–61. https://doi.org/10.1016/j.neuropharm.2009.06.038
  185. Smith A.S., Korgan A.C., Young W.S., 2019. Oxytocin delivered nasally or intraperitoneally reaches the brain and plasma of normal and oxytocin knockout mice // Pharmacol. Res. V. 146. Art. 104324. https://doi.org/10.1016/j.phrs.2019.104324
  186. Smith A.S., Wang Z., 2014. Hypothalamic oxytocin mediates social buffering of the stress response // Biol. Psychiatry. V. 76. № 4. P. 281–288. https://doi.org/10.1016/j.biopsych.2013.09.017
  187. Soares M.C., Bshary R., Fusani L., Goymann W., Hau M., et al., 2010. Hormonal mechanisms of cooperative behaviour // Phil. Trans. R. Soc. B. Biol. Sci. V. 365. № 1553. P. 2737–2750. https://doi.org/10.1098/rstb.2010.0151
  188. Sokołowska E., Gozdowska M., Kulczykowska E., 2020. Nonapeptides arginine vasotocin and isotocin in fishes: Advantage of bioactive molecules measurement // Front. Marine Sci. V. 7. Art. 610. https://doi.org/10.3389/fmars.2020.00610
  189. Stafflinger E., Hansen K.K., Hauser F., Schneider M., Cazzamali G., et al., 2008. Cloning and identification of an oxytocin/vasopressin-like receptor and its ligand from insects // Proc. Natl Acad. Sci. USA. V. 105. P. 3262–3267. https://doi.org/10.1073/pnas.0710897105
  190. Stallen M., Sanfey A.G., 2013. The cooperative brain // Neuroscientist. V. 19. P. 292–303. https://doi.org/10.1177/1073858412469728
  191. Stiffler D.F., Roach S.C., Pruett S.J., 1984. A comparison of the responses of the amphibian kidney to mesotocin, isotocin, and oxytocin // Physiol. Zool. V. 57. № 1. P. 63–69. https://doi.org/10.1086/physzool.57.1.30155969
  192. Stocker M., Prosl J., Vanhooland L.C., Horn L., Bugnyar T., et al., 2021. Measuring salivary mesotocin in birds – Seasonal differences in ravens’ peripheral mesotocin levels // Horm. Behav. V. 134. Art. 105015. https://doi.org/10.1016/j.yhbeh.2021.105015
  193. Stoop R., 2012. Neuromodulation by oxytocin and vasopressin // Neuron. V. 76. № 1. P. 142–159. https://doi.org/10.1016/j.neuron.2012.09.025
  194. Takayanagi Y., Onaka T., 2021. Roles of oxytocin in stress responses, allostasis and resilience // Int. J. Mol. Sci. V. 23. № 1. Art. 150. https://doi.org/10.3390/ijms23010150
  195. Tanaka K., Nakajo S., 1962. Participation of neurohypophyseal hormones in oviposition in the hen // Endocrinology. V. 70. P. 453–458. https://doi.org/10.1210/endo-70-4-453
  196. Thompson M.R., Callaghan P.D., Hunt G.E., Cornish J.L., McGregor I.S., 2007. A role for oxytocin and 5-HT1A receptors in the prosocial effects of 3,4 methylenedioxymethamphetamine (‘ecstasy’) // Neuroscience. V. 146. P. 509–514. https://doi.org/10.1016/j.neuroscience.2007.02.032
  197. Thompson R.R., Walton J.C., 2004. Peptide effects on social behavior: Effects of vasotocin and isotocin on social approach behavior in male goldfish (Carassius auratus) // Behav. Neurosci. V. 118. P. 620–626. https://doi.org/10.1037/0735-7044.118.3.620
  198. Thorne R.G., Emory C.R., Ala T.A., Frey W.H. II, 1995. Quantitative analysis of the olfactory pathway for drug delivery to the brain // Brain Res. V. 692. P. 278–282. https://doi.org/10.1016/0006-8993(95)00637-6
  199. Tomizawa K., Iga N., Lu Y.F., Moriwaki A., Matsushita M., et al., 2003. Oxytocin improves long-lasting spatial memory during motherhood through MAP kinase cascade // Nat. Neurosci. V. 6. № 4. P. 384–390. https://doi.org/10.1038/nn1023
  200. Torner L., Plotsky P.M., Neumann I.D., Jong T.R., de, 2017. Forced swimming-induced oxytocin release into blood and brain: Effects of adrenalectomy and corticosterone treatment // Psychoneuroendocrinology. V. 77. P. 165–174. https://doi.org/10.1016/j.psyneuen.2016.12.006
  201. Triki Z., Daughters K., Dreu C.K., de, 2022. Oxytocin has ‘tend-and-defend’functionality in group conflict across social vertebrates // Phil. Trans. R. Soc. B. V. 377. № 1851. Art. 20210137. https://doi.org/10.1098/rstb.2021.0137
  202. Tsuneoka Y., Yoshihara C., Ohnishi R., Yoshida S., Miyazawa E., et al., 2022. Oxytocin facilitates allomaternal behavior under stress in laboratory mice // eNeuro. V. 9. № 1. P. 1–22. https://doi.org/10.1523/ENEURO.0405-21.2022
  203. Turner L.M., Young A.R., Rompler H., Schoneberg T., Phelps S.M., Hoekstra H.E., 2010. Monogamy evolves through multiple mechanisms: Evidence from V1aR in deer mice // Mol. Biol. Evol. V. 27. P. 1269–1278. https://doi.org/10.1093/molbev/msq013
  204. Tyzio R., Cossart R., Khalilov I., Minlebaev M., Hübner C.A., et al., 2006. Maternal Oxytocin triggers a transient inhibitory switch in GABA signaling in the fetal brain during delivery // Science. V. 314. № 5806. P. 1788–1792. https://doi.org/10.1126/science.1133212
  205. Vaidyanathan R., Hammock E.A., 2017. Oxytocin receptor dynamics in the brain across development and species // Dev. Neurobiol. V. 77. № 2. P. 143–157. https://doi.org/10.1002/dneu.22403
  206. Veenema A.H., Neumann I.D., 2008. Central vasopressin and oxytocin release: Regulation of complex social behaviours // Progr. Brain Res. V. 170. P. 261–276. https://doi.org/10.1016/S0079-6123(08)00422-6
  207. Vu M., Trudeau V.L., 2016. Neuroendocrine control of spawning in amphibians and its practical applications // Gen. Comp. Endocrinol. V. 234. P. 28–39. https://doi.org/10.1016/j.ygcen.2016.03.024
  208. Waldherr M., Neumann I.D., 2007. Centrally released oxytocin mediates mating-induced anxiolysis in male rats // Proc. Natl Acad. Sci. USA. V. 104. P. 16681–16684. https://doi.org/10.1073/pnas.070586010
  209. Weaver I.C., Cervoni N., Champagne F.A., D’Alessio A.C., Sharma S., et al., 2004. Epigenetic programming by maternal behavior // Nat. Neurosci. V. 7. № 8. P. 847–854. https://doi.org/10.1038/nn1276
  210. Weber A.M., Harrison T.M., Steward D.K., 2018. Expanding regulation theory with oxytocin: A psychoneurobiological model for infant development // Nurs. Res. V. 67. № 2. P. 133–145. https://doi.org/10.1097/NNR.0000000000000261
  211. Windle R.J., Kershaw Y.M., Shanks N., Wood S.A., Lightman S.L., Ingram C.D., 2004. Oxytocin attenuates stress-induced c-fos mRNA expression in specific forebrain regions associated with modulation of hypothalamo–pituitary–adrenal activity // J. Neurosci. V. 24. № 12. P. 2974–2982. https://doi.org/10.1523/JNEUROSCI.3432-03.2004
  212. Windle R.J., Shanks N., Lightman S.L., Ingram C.D., 1997. Central oxytocin administration reduces stress-induced corticosterone release and anxiety behavior in rats // Endocrinology. V. 138. P. 2829–2834. https://doi.org/10.1210/endo.138.7.5255
  213. Wingfield J.C., Hegner R.E., Dufty A.M., Ball G.F., 1990. The “challenge hypothesis”: Theoretical implications for patterns of testosterone secretion, mating systems, and breeding strategies // Am. Nat. V. 136. P. 829–846. https://doi.org/10.1086/285134
  214. Winterton A., Westlye L.T., Steen N.E., Andreassen O.A., Quintana D.S., 2021. Improving the precision of intranasal oxytocin research // Nat. Hum. Behav. V. 5. № 1. P. 9–18. https://doi.org/10.1038/s41562-020-00996-4
  215. Wirobski G., Range F., Schaebs F.S., Palme R., Deschner T., Marshall-Pescini S., 2021. Life experience rather than domestication accounts for dogs’ increased oxytocin release during social contact with humans // Sci. Rep. V. 11. № 1. Art. 14423. https://doi.org/10.1038/s41598-021-93922-1
  216. Wirth M.M., 2014. Hormones, stress, and cognition: The effects of glucocorticoids and oxytocin on memory // Adapt. Human Behav. Physiol. V. 1. № 2. P. 177–201. https://doi.org/10.1007/s40750-014-0010-4
  217. Wittig R.M., Crockford C., Deschner T., Langergraber K.E., Ziegler T.E., Zuberbühler K., 2014. Food sharing is linked to urinary oxytocin levels and bonding in related and unrelated wild chimpanzees // Proc. Roy. Soc. B. Biol. Sci. V. 281. № 1778. Art. 20133096. https://doi.org/10.1098/rspb.2013.3096
  218. Wittig R.M., Crockford C., Weltring A., Langergraber K.E., Deschner T., Zuberbühler K., 2016. Social support reduces stress hormone levels in wild chimpanzees across stressful events and everyday affiliations // Nat. Commun. V. 7. Art. 13361. https://doi.org/10.1038/ncomms13361
  219. Yamagishi A., Okada M., Masuda M., Sato N., 2020. Oxytocin administration modulates rats’ helping behavior depending on social context // Neurosci. Res. V. 153. P. 56–61. https://doi.org/10.1016/j.neures.2019.04.001
  220. Yamashita K., Kitano T., 2013. Molecular evolution of the oxytocin–oxytocin receptor system in eutherians // Mol. Phylogenet. Evol. V. 67. № 2. P. 520–528. https://doi.org/10.1016/j.ympev.2013.02.017
  221. Yamasue H., Yee J.R., Hurlemann R., Rilling J.K., Chen F.S., et al., 2012. Integrative approaches utilizing oxytocin to enhance prosocial behavior: From animal and human social behavior to autistic social dysfunction // J. Neurosci. V. 32. № 41. P. 14109–14117. https://doi.org/10.1523/JNEUROSCI.3327-12.2012
  222. Yang X., Wang W., Wang X.T., Wang Y.W., 2021. A meta-analysis of hormone administration effects on cooperative behaviours: Oxytocin, vasopressin, and testosterone // Neurosci. Biobehav. Rev. V. 126. P. 430–443. https://doi.org/10.1016/j.neubiorev.2021.03.033
  223. Yoshihara C., Numan M., Kuroda K.O., 2017. Oxytocin and parental behaviors // Behavioral Pharmacology of Neuropeptides Oxytocin / Eds Hurlemann R., Grine-vich V. Cham: Springer. P. 119–153. https://doi.org/10.1007/7854_2017_11
  224. Young L.J., 1999. Oxytocin and vasopressin receptors and species-typical social behaviors // Horm. Behav. V. 36. P. 212–221. https://doi.org/10.1006/hbeh.1999.1548
  225. Young L.J., 2009. The neuroendocrinology of the social brain // Front. Neuroendocrinol. V. 30. № 4. P. 425–428. https://doi.org/10.1016/j.yfrne.2009.06.002
  226. Young L.J., Wang Z., Insel T.R., 1999. Neuroendocrine bases of monogamy // Trends Neurosci. V. 21. P. 71–75. https://doi.org/10.1016/S0166-2236(97)01167-3
  227. Yuan Z., Wang Y., Yu W., Xie W., Zhang Z., et al., 2020. Seasonal expressions of oxytocin and oxytocin receptor in the epididymides in the wild ground squirrels (Citellus dauricus Brandt) // Gen. Comp. Endocrinol. V. 289. Art. 113391. https://doi.org/10.1016/j.ygcen.2020.113391
  228. Zarei S.A., Sheibani V., Tomaz C., Mansouri F.A., 2019. The effects of oxytocin on primates’ working memory depend on the emotional valence of contextual factors // Behav. Brain Res. V. 362. P. 82–89. https://doi.org/10.1016/j.bbr.2018.12.050
  229. Zhang F., Liu Q., Wang Z., Xie W., Sheng X., et al., 2017. Seasonal expression of oxytocin and oxytocin receptor in the scented gland of male muskrat (Ondatra zibethicus) // Sci. Rep. V. 7. № 1. Art. 16627. https://doi.org/10.1038/s41598-017-16973-3
  230. Ziegler T.E., Crockford C., 2017. Neuroendocrine control in social relationships in non-human primates: Field based evidence // Horm. Behav. V. 91. P. 107–121. https://doi.org/10.1016/j.yhbeh.2017.03.004

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2024

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».