Pelagic algocenoses of the Barents Sea in the area of the ice edge in the spring

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

In April 2019, comprehensive studies of phytoplankton were carried out in the northeast of the Barents Sea simultaneously with the determination of hydrological characteristics. The purpose of the work was to identify the structural features of the marginal bloom of pelagic microalgae in the spring. The taxonomic list of organisms found in the studied water area included 61 representatives identified to the species level. The indicator of species similarity (Jaccard coefficient) of algocenoses in various water masses reached a level of just over 20%, namely: for communities of the Atlantic and the Barents Sea waters 24.69%; the Barents Sea and Arctic 23.08%; Arctic and Atlantic − 20.24%. At the same time, between stations in the edge zone and those nearby on the section it was more than 40%. It can be argued that during the observation period there was no influence of ice flora components on pelagic communities.

全文:

受限制的访问

作者简介

P. Makarevich

Murmansk Marine Biological Institute, RAS

Email: larionov@mmbi.info
俄罗斯联邦, Vladimirskaya str., 17, Murmansk, 183010

E. Druzhkova

Murmansk Marine Biological Institute, RAS

Email: larionov@mmbi.info
俄罗斯联邦, Vladimirskaya str., 17, Murmansk, 183010

V. Larionov

Murmansk Marine Biological Institute, RAS

编辑信件的主要联系方式.
Email: larionov@mmbi.info
俄罗斯联邦, Vladimirskaya str., 17, Murmansk, 183010

参考

  1. Ильяш Л.В., Житина Л.С., Кудрявцева В.А., Мельников И.А., 2012. Сезонная динамика видового состава и биомассы водорослей в прибрежных льдах Кандалакшского залива Белого моря // Журн. общ. биологии. Т. 73. № 6. С. 461–472.
  2. Кудрявцева Е.А, Кравчишина М.Д., Паутова Л.А., Русанов И.И., Силкин В.А. и др., 2023. Размерная структура первичных продуцентов в маргинальной ледовой зоне морей Европейской Арктики в летний период // Докл. РАН: Науки о Земле. T. 508. № 1. С. 108–114.
  3. Ларионов В.В., 1997. Общие закономерности пространственно-временной изменчивости фитопланктона Баренцева моря // Планктон морей Западной Арктики. Апатиты: Изд. КНЦ РАН. С. 65–127.
  4. Макаревич П.Р., 2007. Планктонные альгоценозы эстуарных экосистем. Баренцево, Карское и Азовское моря. М.: Наука. 224 с.
  5. Макаревич П.Р., Дружкова Е.И., 2010. Сезонные циклические процессы в прибрежных планктонных альгоценозах северных морей. Ростов-на-Дону: Изд. ЮНЦ РАН. 280 с.
  6. Мамаев О.И., 1987. Термохалинный анализ вод Мирового океана. Л.: Гидрометеоиздат. 296 с.
  7. Михайловский Г.Е., 1992. Жизнь и ее организация в пелагиали Мирового океана. М.: Наука. 270 с.
  8. Ожигин В.К., Ившин В.А., Трофимов А.Г., Карсаков А.Л., Анциферов М.Ю., 2016. Воды Баренцева моря: структура, циркуляция, изменчивость. Мурманск: Изд. ПИНРО. 260 с.
  9. Паутова Л.А., Силкин В.А., Кравчишина М.Д., Якубенко В.Г., Кудрявцева Е.А. и др., 2021. Пелагическая экосистема котловины Нансена в условиях изменчивости притока атлантической воды: механизм формирования диатомового цветения в прикромочной зоне // Докл. РАН: Науки о Земле. Т. 499. № 1. С. 71–76.
  10. Паутова Л.А., Силкин В.А., Кравчишина М.Д., Якубенко В.Г., Чульцова А.Л., 2019. Летний фитопланктон северной части Баренцева моря (75–80º N) // Экология гидросферы. № 2 (4). С. 8–19.
  11. Роухияйнен М.И., 1961. Весеннее цветение фитопланктона в 1955–1957 гг. // Гидрологические и биологические особенности прибрежных вод Восточного Мурмана. Мурманск: Книжное изд-во. С. 98–108.
  12. Роухияйнен М.И., 1962. Сезонность в развитии фитопланктона в прибрежных водах Восточного Мурмана // Тр. ММБИ. Т. 4. № 8. С. 11–18.
  13. Сажин А.Ф., Ратькова Т.Н., Мошаров С.А., Романова Н.Д., Мошарова И.В., Портнова Д.А., 2012. Биологические компоненты сезонного льда // Биологические ресурсы Белого моря: изучение и использование. Исследования фауны морей. Т. 69 (77). СПб.: Изд. ЗИН РАН. С. 97–115.
  14. Суханова И.Н., 1983. Концентрирование фитопланктона в пробе // Современные методы количественной оценки распределения морского планктона. М.: Наука. С. 97–105.
  15. Ardyna M., Mundy C.J., Mayot N., Matthes L.C., Oziel L., et al., 2020. Under-ice Phytoplankton blooms: Shedding light on the “invisible” part of Arctic primary production // Front. Mar. Sci. V. 7. P. 1–25.
  16. Arrigo K.R., Worthen D., Schnell A., Lizotte M.P., 1998. Primary production in Southern Ocean waters // J. Geophys. Res. V. 103. № 15. P. 587–600.
  17. Årthun M., Eldevik T., Smedsrud L.H., Skagseth Ø., Ingvaldsen R.B., 2012. Quantifying the influence of Atlantic heat on Barents Sea ice variability and retreat // J. Climatol. V. 25. P. 4736–4743. https://doi.org/10.1175/JCLI-D-11-00466.1
  18. Barber D.G., Lukovich J.V., Keogak J., Baryluk S., Fortier L., Henry G.H.R., 2008. The changing climate of the Arctic // Arctic. V. 61. № 5. P. 7–26. https://doi.org/10.14430/arctic98
  19. Bestion E., Haegeman B., Codesal S.A., Garreau A., Huet M., et al., 2021. Phytoplankton biodiversity is more important for ecosystem functioning in highly variable thermal environments // Proc. Natl Acad. Sci. USA. V. 118. Art. e2019591118.
  20. Biological Atlas of the Arctic Seas, 2000. Plankton of the Barents and Kara Seas. https://www.nodc.noaa.gov/OC5/BARPLANK/start.html
  21. Boitsov V.D., Karsakov A.L., Trofimov A.G., 2012. Atlantic water temperature and climate in the Barents Sea, 2000–2009 // ICES J. Mar. Sci. V. 69. P. 833–840. https://doi.org/10.1093/icesjms/fss075
  22. Bunt J.S., 1975. Primary productivity of marine ecosystems // Primary Productivity of the Biosphere. Ecological Studies. V. 14. Berlin; Heidelberg: Springer. P. 169– 183. https://doi.org/10.1007/978-3-642-80913-2_8
  23. Comiso J.C., 2012. Large decadal decline of the Arctic multiyear ice cover // J. Climatol. V. 25. P. 1176–1193. https://doi.org/10.1175/JCLI-D-11-00113.1
  24. Comiso J.C., Hall D.K., 2014. Climate trends in the Arctic as observed from space // Climate Change. V. 5. P. 389–409. https://doi.org/10.1002/wcc.277
  25. Dodson A.N., Thomas W.H., 1964. Concentrating plankton in a gentle fashion // Limnol. Оceanogr. V. 9. P. 455–456.
  26. Druzhkov N.V., Makarevich P.R., 1992. Structural characteristic of the microphytoplankton seasonal development in the coastal ecosystem // Phytoplankton of the Barents Sea. Apatity: KSC RAN Publ. P. 83–96.
  27. Duncan R.J., Petrou K., 2022. Biomolecular composition of sea ice microalgae and its influence on marine biogeochemical cycling and carbon transfer through Polar marine food webs // Geosciences. V. 12. Art. 38. https://doi.org/10.3390/geosciences12010038
  28. Edler L., 1979. Recommendations on methods for marine biological studies in the Baltic Sea: Phytoplankton and chlorophyll // Baltic Mar. Biol. Publ. V. 3. P. 1–38.
  29. Fernández-Méndez M., Katlein C., Rabe B., Nicolaus M., Peeken I., et al., 2015. Photosynthetic production in the central Arctic Ocean during the record sea-ice minimum in 2012 // Biogeosciences. V. 12. P. 3525–3549.
  30. Fitch D.T., Moore J.K., 2007. Wind speed influence on phytoplankton bloom dynamics in the Southern Ocean Marginal Ice Zone // J. Geophys. Res. V. 112. Art. C08006. https://doi.org/10.1029/2006JC004061
  31. Hansen B., Berggreen U.C., Tande K.S., Eilertsen H.C., 1990. Post-bloom grazing by Calanus glacialis, C. finmarchicus and C. hyperboreus in the region of Polar Front, Barents Sea // Mar. Biol. V. 104. P. 5–14.
  32. Hopes A., Mock T., 2015. Evolution of microalgae and their adaptations in different marine ecosystems // eLS. Chichester: John Wiley & Sons. P. 1–9. https://doi.org/10.1002/9780470015902.a0023744
  33. Horvat C., Jones D.R., Iams S., Schroeder D., Flocco D., Feltham D., 2017. The frequency and extentof sub-ice phytoplankton blooms in the Arctic Ocean // Sci. Adv. V. 3. Art. e1601191. https://doi.org/10.1126/sciadv.1601191
  34. IPCC, 2019. IPCC Special Report on the Ocean and Cryosphere in a Changing Climate. https://www.ipcc.ch/srocc/
  35. Johnsen G., Norli M., Moline M., Robbins I., Quillfeldt C., von, et al., 2018. The advective origin of an under-ice spring bloom in the Arctic Ocean using multiple observational platforms // Pol. Biol. V. 41. P. 1197–1216.
  36. Karlsen B., Cusack C., Beensen E., 2010. Microscopic and Molecular Methods for Quantitative Phytoplankton Analysis. Paris: UNESCO Press. 110 p.
  37. Kinney J.C., Maslowski W., Osinski R., Jin M., Frants M., et al., 2020. Hidden production: On the importance of pelagic phytoplankton blooms beneath Arctic Sea ice // J. Geophys. Res. Oceans. V. 125. Art. e2020JC016211. https://doi.org/10.1029/2020JC016211
  38. Lewis K.M., Dijken G.L., van, Arrigo K.R., 2020. Changes in phytoplankton concentration now drive increased Arctic Ocean primary production // Science. V. 369. P. 198–202.
  39. Li W.K.W., McLaughlin F.A., Lovejoy C., Carmack E.C., 2009. Smallest algae thrive as the Arctic Ocean freshens // Science. V. 326. P. 539. https://doi.org/10.1126/science.117979
  40. Lizotte M.P., 2001. The contributions of sea ice algae to Antarctic marine primary production // Am. Zool. V. 41. P. 57–73.
  41. Makarevich P.R., Druzhkova E.I., Larionov V.V., 2012. Primary producers of the Barents Sea // Diversity of Ecosystems. Rijeka: InTech Publ. P. 367–392. http://www.intechopen.com/books/diversity-of-ecosystems/primary-producers-of-the-barents-sea
  42. Makarevich P.R., Larionov V.V., Druzhkov N.V., 1993. Mean weights of dominant phytoplankton of the Barents Sea // Algology. V. 13. P. 103–106.
  43. Makarevich P.R., Vodopianova V.V., Bulavina A.S., 2022. Dynamics of the spatial chlorophyll-a distribution at the Polar Front in the Marginal Ice Zone of the Barents sea during spring // Wate. V. 14. Art. 101. https://doi.org/10.3390/w14010101
  44. Mallett R.D.C., Stroeve J.C., Tsamados M., Landy J.C., Willatt R., et al., 2021. Faster decline and higher variability in the sea ice thickness of the marginal Arctic seas when accounting for dynamic snow cover // Cryosphere. V. 15. P. 2429–2450.
  45. Meredith M., Sommerkorn M., Cassotta S., Derksen C., Ekaykin A., et al., 2019. Polar regions // IPCC Special Report on the Ocean and Cryosphere in a Changing Climate. Cambridge: Cambridge Univ. Press. Р. 203–320.
  46. Moore J.K., Abbott M.R., 2000. Phytoplankton chlorophyll distributions and primary production in the Southern Ocean // J. Geophys. Res. V. 105. № 28. P. 709–722.
  47. Neeley A.R., Harris L.A., Frey K.E., 2018. Unraveling phytoplankton community dynamics in the Northern Chukchi sea under sea-ice-covered and sea-ice-free conditions // Geophys. Res. Lett. V. 45. P. 7663–7671.
  48. Oziel L., Massicotte P., Randelhoff A., Ferland J., Vladoiu A., et al., 2019. Environmental factors influencing the seasonal dynamics of spring algal blooms in and beneath sea ice in western Baffin Bay // Elementa: Sci. Anthropocene. V. 7. Art. 34. https://doi.org/10.1525/elementa.372
  49. Oziel L., Neukermans G., Ardyna M., Lancelot C., Tison J.-L., et al., 2017. Role for Atlantic inflows and sea ice loss on shifting phytoplankton blooms in the Barents Sea // J. Geophys. Res. Oceans. V. 122. № 6. P. 5121–5139. https://doi.org/10.1002/2016JC012582L
  50. Parkinson C.L., 2014. Global sea ice coverage from satellite data: Annual cycle and 35-yr trends // J. Climatol. V. 27. P. 9377–9382.
  51. Perrette M., Yool A., Quartly G.D., Popova E.E., 2011. Near-ubiquity of ice-edge blooms in the Arctic // Biogeosciences. V. 8. P. 515–524. https://doi.org/10.5194/bg-8-515-2011
  52. Qu B., Gabric A.J., Matrai P.A., 2006. The satellite-derived distribution of chlorophyll-a and its relation to ice cover, radiation and sea surface temperature in the Barents Sea // Polar Biol. V. 29. P. 196–210. https://doi.org/10.1007/s00300-005-0040-2
  53. Sakshaug E., 2004. Primary and secondary production in the Arctic Seas // The Organic Carbon Cycle in the Arctic Ocean. Berlin; Heidelberg: Springer. P. 57–81.
  54. Schandelmeier L., Alexander V., 1981. An analysis of the influence of ice on spring phytoplankton population structure in the southeast Bering Sea // Limnol. Oceanogr. V. 26. P. 935–943.
  55. Serreze M.C., Holland M.M., Stroeve J., 2007. Perspectives on the Arctic’s shrinking sea-ice cover // Science. V. 315. P. 1533–1536. https://doi.org/10.1126/science.1139426
  56. Silva E., Counillon F., Brajard J., Korosov A., Pettersson L.H., et al., 2021. Twenty-one years of phytoplankton bloom phenology in the Barents, Norwegian, and North Seas // Front. Mar. Sci. V. 8. Art. 746327. https://doi.org/10.3389/fmars.2021.746327
  57. Smedsrud L.H., Esau I., Ingvaldsen R.B., Eldevik T., Haugan P.M., et al., 2013. The role of the Barents Sea in the Arctic climate system // Rev. Geophys. V. 51. № 3. P. 415–449. https://doi.org/10.1002/rog.20017
  58. Smith W.O., Jr., Nelson D.M., 1986. Importance of ice edge phytoplankton production in the Southern Ocean // BioScience. V. 36. P. 251–257.
  59. Sugie K., Fujiwara A., Nishino S., Kameyama S., Harada N., 2020. Impacts of temperature, CO2, and salinity on phytoplankton community composition in the Western Arctic Ocean // Front. Mar. Sci. V. 6. Art. 821.
  60. Sun J., Liu D., 2003. Geometric models for calculating cell biovolume and surface area for phytoplankton // J. Plankt. Res. V. 11. № 25. P. 1331–1346.
  61. Syvertsen E.E., 1991. Ice algae in the Barents Sea: Types of assemblages, origin, fate and role in the ice-edge phytoplankton bloom // Polar Res. V. 10. P. 277–287.
  62. Wang Y., Xiang P., Kang J., Ye Y.Y., Lin G.M., et al., 2018. Microphytoplankton community structure in the western Arctic Ocean: Surface layer variability of geographic and temporal considerations in summer // Hydrobiologia. V. 811. P. 295–312. https://doi.org/10.1007/s10750-017-3500-0

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Map-scheme of the study area and location of sampling stations (22-33, 40-45).

下载 (411KB)
3. Fig. 2. The proportion of individual species (in percent, on average for all stations and sampling horizons) from the total values ​​of abundance (N) and biomass (B) of pelagic algal communities in the studied area.

下载 (478KB)
4. Fig. 3. Abundance (N, thousand cells/l) and biomass (B, μg/l) of phytoplankton in the studied area of ​​the Barents Sea.

下载 (357KB)

版权所有 © Russian Academy of Sciences, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».