Leaf bacterial microbiome of alpine plants in the NW Caucasus: factors of taxonomic diversity

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Endophytic bacterial communities in leaves participate in pathogen control, plant immune responses and the induction and mediation of stress resistance through the production of hormones and antioxidants. Understanding the composition, structure and factors influencing microbiome formation will enable us to consider plants as holobionts. Consequently, adaptation can be viewed not merely as a physiological and biochemical response, but rather as the ability of plants to shape the composition of their own microbiome. For the first time, data were obtained on the composition and structure of bacterial endophytes in the leaves of plants from four communities of the alpine belt of the Northwest Caucasus. These communities differed significantly in the number of bacterial taxa and the Shannon diversity index. However, no significant differences were observed between alpine snow bed communities and Geranium–Hedysarum meadows at various taxonomic levels. The factors studied had differing effects on abundant and less-represented bacterial taxa, often the factor has a significant effect only at the level of one group. The greatest influence on the composition of bacterial endophytes in plant leaves in the alpine communities was exerted by the community type and plant taxonomy. The contribution of the factors examined to the formation of leaf endophytic bacterial communities decreased in the following order: host plant taxonomy → community type → plant functional traits ≈ topographic factors.

About the authors

I. A. Zhirov

Lomonosov Moscow State University, Faculty of Biology

Email: zhirov@mail.bio.msu.ru
Leninskie Gory, 1/12, Moscow, 119991 Russia

A. V. Smirnova

Lomonosov Moscow State University, Faculty of Biology

Leninskie Gory, 1/12, Moscow, 119991 Russia

A. A. Klyukina

Winogradsky Institute of Microbiology, Research Centre of Biotechnology, RAS

Leninsky prosp., 33, bld. 2, Moscow, 119071 Russia

A. A. Akhmetzhanova

Lomonosov Moscow State University, Faculty of Biology

Leninskie Gory, 1/12, Moscow, 119991 Russia

T. G. Elumeeva

Lomonosov Moscow State University, Faculty of Biology

Leninskie Gory, 1/12, Moscow, 119991 Russia

V. G. Onipchenko

Lomonosov Moscow State University, Faculty of Biology; Aliyev Karachay-Cherkess State University; Teberda National Reserve

Email: vonipchenko@mail.ru
Leninskie Gory, 1/12, Moscow, 119991 Russia; Lenin str., 29, Karachayevsk, Karachay-Cherkess Republic, 369202 Russia; Teberda, Karachay-Cherkess Republic, 369210 Russia

References

  1. Онипченко В.Г., Варыбок С.Д., Ахметжанова А.А., 2024. Что такое субальпийский пояс на Кавказе? // Докл. АМАН. Т. 24. № 2. С. 85–94.
  2. Павлова И.В., Онипченко В.Г., 1992. Динамика альпийской растительности северо-западного Кавказа в голоцене // Историческая экология диких и домашних копытных. История пастбищных экосистем / Отв. ред. Динесман Л.Г. М.: Наука. С. 109–129.
  3. Arnault G., Mony C., Vandenkoornhuyse P., 2023. Plant microbiota dysbiosis and the Anna Karenina Principle // Trends Plant Sci. V. 28. № 1. P. 18–30.
  4. Bai Y., Müller D.B., Srinivas G., Garrido-Oter R., Potthoff E., et al., 2015. Functional overlap of the Arabidopsis leaf and root microbiota // Nature. V. 528. № 7582. P. 364–369.
  5. Bao L., Gu L., Sun B., Cai W., Zhang S., et al., 2020. Seasonal variation of epiphytic bacteria in the phyllosphere of Gingko biloba, Pinus bungeana and Sabina chinensis // FEMS Microbiol. Ecol. V. 96. № 3. Art. fiaa017.
  6. Beattie G.A., Lindow S.E., 1999. Bacterial colonization of leaves: A spectrum of strategies // Phytopathology. V. 89. № 5. P. 353–359.
  7. Bodenhausen N., Horton M.W., Bergelson J., 2013. Bacterial communities associated with the leaves and the roots of Arabidopsis thaliana // PLoS One. V. 8. № 2. Art. e56329.
  8. Boisseaux M., Troispoux V., Bordes A., Cazal J., Cazal S.-O., et al., 2024. Are plant traits drivers of endophytic communities in seasonally flooded tropical forests? // Am. J. Bot. V. 111. № 12. Art. e16366.
  9. Bolyen E., Rideout J.R., Dillon M.R., Bokulich N.A., Abnet C.C., et al., 2019. Reproducible, interactive, scalable and extensible microbiome data science using QIIME2 // Nat. Biotechnol. V. 37. № 8. P. 852–857.
  10. Brandl M.T., Mammel M.K., Simko I., Richter T.K.S., Gebru S.T., Leonard S.R., 2023. Weather factors, soil microbiome, and bacteria-fungi interactions as drivers of the epiphytic phyllosphere communities of romaine lettuce // Food Microbiol. V. 113. Art. 104260.
  11. Bright M., Bulgheresi S., 2010. A complex journey: Transmission of microbial symbionts // Nat. Rev. Microbiol. V. 8. № 3. P. 218–230.
  12. Bulgarelli D., Schlaeppi K., Spaepen S., Themaat E.V.L., van, Schulze-Lefert P., 2013. Structure and functions of the bacterial microbiota of plants // Ann. Rev. Plant Biol. V. 64. P. 807–838.
  13. Carrell A.A., Frank A.C., 2014. Pinus flexilis and Picea engelmannii share a simple and consistent needle endophyte microbiota with a potential role in nitrogen fixation // Front. Microbiol. V. 5. Art. 333.
  14. Carvalhais L.C., Dennis P.G., Fan B., Fedoseyenko D., Kierul K., et al., 2013. Linking plant nutritional status to plant-microbe interactions // PLoS One. V. 8. № 7. Art. e68555.
  15. Chaudhry V., Runge P., Sengupta P., Doehlemann G., Par-ker J.E., Kemen E., 2021. Shaping the leaf microbiota: plant–microbe–microbe interactions // J. Exp. Bot. V. 72. № 1. P. 36–56.
  16. Chaumeil P.-A., Mussig A.J., Hugenholtz P., Parks D.H., 2022. GTDB-Tk v2: Memory friendly classification with the genome taxonomy database // Bioinformatics. V. 38. № 23. P. 5315–5316.
  17. Chelius M.K., Triplett E.W., 2001. The diversity of archaea and bacteria in association with the roots of Zea mays L. // Microb. Ecol. V. 41. № 3. P. 252–263.
  18. Chen L., Zhang M., Liu D., Sun H., Wu J., et al., 2022. Designing specific bacterial 16S primers to sequence and quantitate plant endo-bacteriome // Sci. China Life Sci. V. 65. № 5. P. 1000–1013.
  19. Compant S., Reiter B., Sessitsch A., Nowak J., Clément C., Ait Barka E., 2005. Endophytic colonization of Vitis vinifera L. by plant growth-promoting bacterium Burkholderia sp. Strain PsJN // Appl. Environ. Microbiol. V. 71. № 4. P. 1685–1693.
  20. Dessaux Y., Petit A., Farrand S.K., Murphy P.J., 1998. Opines and opine-like molecules involved in plant–Rhizobiaceae interactions // The Rhizobiaceae: Molecular Biology of Model Plant-Associated Bacteria / Еds Spaink H.P., Kondorosi A., Hooykaas P.J.J. Dordrecht: Springer Netherlands. P. 173–197.
  21. Ding T., Melcher U., 2016. Influences of plant species, season and location on leaf endophytic bacterial communities of non-cultivated plants // PLoS One. V. 11. № 3. Art. e0150895.
  22. Ding T., Palmer M.W., Melcher U., 2013. Community terminal restriction fragment length polymorphisms reveal insights into the diversity and dynamics of leaf endophytic bacteria // BMC Microbiol. V. 13. Art. 1. https://doi.org/10.1186/1471-2180-13-1
  23. Donald J., Roy M., Suescun U., Iribar A., Manzi S., et al., 2020. A test of community assembly rules using foliar endophytes from a tropical forest canopy // J. Ecol. V. 108. № 4. P. 1605–1616.
  24. Edwards J., Johnson C., Santos-Medellín C., Lurie E., Podishetty N.K., et al., 2015. Structure, variation, and assembly of the root-associated microbiomes of rice // Proc. Natl Acad. Sci. V. 112. № 8. P. E911–E920.
  25. Ellenberg H., 1988. Vegetation Ecology of Central Europe. Cambridge: Cambridge Univ. Press. 731 p.
  26. Ferrando L., Mañay J.F., Scavino A.F., 2012. Molecular and culture-dependent analyses revealed similarities in the endophytic bacterial community composition of leaves from three rice (Oryza sativa) varieties // FEMS Microbiol. Ecol. V. 80. № 3. P. 696–708.
  27. Ferreira L., Gao Z., Rossmann M., Nans A., Brenzinger S., et al., 2019. γ-proteobacteria eject their polar flagella under nutrient depletion, retaining flagellar motor relic structures // PLoS Biol. V. 17. https://doi.org/10.1371/journal.pbio.3000165
  28. Frank A.C., Saldierna Guzmán J.P., Shay J.E., 2017. Transmission of bacterial endophytes // Microorganisms. V. 5. № 4. Art. 70.
  29. Fuchs G., Boll M., Heider J., 2013. Microbial degradation of aromatic compounds – from one strategy to four // Nat. Rev. Microbiol. V. 9. P. 803–816.
  30. Fürnkranz M., Lukesch B., Müller H., Huss H., Grube M., Berg G., 2012. Microbial diversity inside pumpkins: Microhabitat-specific communities display a high antagonistic potential against phytopathogens // Microb. Ecol. V. 63. № 2. P. 418–428.
  31. Given C., Häikiö E., Kumar M., Nissinen R., 2020. Tissue-specific dynamics in the endophytic bacterial communities in Arctic pioneer plant Oxyria digyna // Front. Plant Sci. V. 11. https://doi.org/10.3389/fpls.2020.00561
  32. Gohl M., Mac-Lean A., Hauge A., Becker A., Walek D., Beckman B., 2016. An optimized protocol for high-throughput amplicon-based microbiome profiling // Protoc. Exch. https://dx.doi.org/10.1038/protex.2016.030
  33. Guo J., Ling N., Li Y., Li K., Ning H., et al., 2021. Seed-borne, endospheric and rhizospheric core microbiota as predictors of plant functional traits across rice cultivars are dominated by deterministic processes // New Phytol. V. 230. № 5. P. 2047–2060.
  34. Hallmann J., 2001. Plant interactions with endophytic bacteria // Biotic Interactions in Plant-Pathogen Associations. Wallingford: CABI Publishing. P. 87–119.
  35. Hardoim P.R., Hardoim C.C.P., Overbeek L.S., van, Elsas J.D., van, 2012. Dynamics of seed-borne rice endophytes on early plant growth stages // PLoS One. V. 7. № 2. Art. e30438.
  36. Hardoim P.R., Overbeek L.S., van, Berg G., Pirttilä A.M., Compant S., et al., 2015. The hidden world within plants: Ecological and evolutionary considerations for defining functioning of microbial endophytes // Microbiol. Mol. Biol. Rev. V. 79. № 3. P. 293–320.
  37. Hardoim P.R., Overbeek L.S., van, Elsas J.D., van, 2008. Properties of bacterial endophytes and their proposed role in plant growth // Trends Microbiol. V. 16. № 10. P. 463–471.
  38. Harrison J.G., Beltran L.P., Buerkle C.A., Cook D., Gardner D.R., et al., 2021. A suite of rare microbes interacts with a dominant, heritable, fungal endophyte to influence plant trait expression // ISME J. V. 15. № 9. P. 2763–2778.
  39. Howe A., Stopnisek N., Dooley S.K., Yang F., Grady K.L., Shade A., 2023. Seasonal activities of the phyllosphere microbiome of perennial crops // Nat. Commun. V. 14. № 1. Art. 1039.
  40. James E.K., Gyaneshwar P., Mathan N., Barraquio W.L., Reddy P.M., et al., 2002. Infection and colonization of rice seedlings by the plant growth-promoting bacterium Herbaspirillum seropedicae Z67 // Mol. Plant Microbe Interact. V. 15. № 9. P. 894–906.
  41. Juniper B.E., 1991. The leaf from the inside and the outside: A microbe’s perspective // Microbial Ecology of Leaves / Eds Andrews J.H., Hirano S.S. N.-Y.: Springer, Brock; Springer Series in Contemporary Bioscience. P. 21–42.
  42. Kandel S.L., Joubert P.M., Doty S.L., 2017. Bacterial endophyte colonization and distribution within plants // Microorganisms. V. 5. № 4. Art. 77.
  43. Kembel S.W., O’Connor T.K., Arnold H.K., Hubbell S.P., Wright S.J., Green J.L., 2014. Relationships between phyllosphere bacterial communities and plant functional traits in a neotropical forest // Proc. Natl Acad. Sci. V. 111. № 38. P. 13715–13720.
  44. Klarenberg I.J., Keuschnig C., Russi Colmenares A.J., Warshan D., Jungblut A.D., et al., 2022. Long-term warming effects on the microbiome and nifH gene abundance of a common moss species in sub-Arctic tundra // New Phytol. V. 234. № 6. P. 2044–2056.
  45. Liu H., Brettell L.E., Qiu Z., Singh B.K., 2020. Microbiome-mediated stress resistance in plants // Trends Plant Sci. V. 25. № 8. P. 733–743.
  46. Liu L., Kloepper J.W., Tuzun S., 1995. Induction of systemic resistance in cucumber against bacterial angular leaf spot by plant growth-promoting rhizobacteria // Phytopathology. V. 85. P. 843–847.
  47. Lo Piccolo S., Ferraro V., Alfonzo A., Settanni L., Ercolini D., et al., 2010. Presence of endophytic bacteria in Vitis vinifera leaves as detected by fluorescence in situ hybridization // Ann. Microbiol. V. 60. № 1. P. 161–167.
  48. Lodewyckx C., Vangronsveld J., Porteous F., Moore E.R.B., Taghavi S., et al., 2002. Endophytic bacteria and their potential applications // Critical Rev. Plant Sci. V. 21. P. 583–606.
  49. Malfanova N., Lugtenberg B.J.J., Berg G., 2013. Bacterial endophytes: Who and where, and what are they doing there? // Molecular Microbial Ecology of the Rhizosphere. N.Y.: John Wiley & Sons, Ltd. P. 391–403.
  50. McCully M.E., 2001. Niches for bacterial endophytes in crop plants: A plant biologist’s view // Funct. Plant Biol. V. 28. № 9. P. 983–990.
  51. Melotto M., Zhang L., Oblessuc P.R., He S.Y., 2017. Stomatal defense a decade later // Plant Physiol. V. 174. № 2. P. 561–571.
  52. Michalko J., Medo J., Ferus P., Konôpková J., Košútová D., et al., 2022. Changes of endophytic bacterial community in mature leaves of Prunus laurocerasus L. during the seasonal transition from winter dormancy to vegetative growth // Plants. V. 11. № 3. Art. 417.
  53. Miller I.M., 1990. Bacterial leaf nodule symbiosis // Adv. Bot. Res. V. 17. P. 163–234.
  54. Naveed M., Mitter B., Reichenauer T.G., Wieczorek K., Sessitsch A., 2014. Increased drought stress resilience of maize through endophytic colonization by Burkholderia phytofirmans PsJN and Enterobacter sp. FD17 // Environ. Exp. Bot. V. 97. P. 30–39.
  55. Nissinen R.M., Männistö M.K., Elsas J.D., van, 2012. Endophytic bacterial communities in three Arctic plants from low Arctic fell tundra are cold-adapted and host-plant specific // FEMS Microbiol. Ecol. V. 82. № 2. P. 510–522.
  56. Oksanen J., Blanchet F.G., Friendly M., Kindt R., Legendre P., et al., 2020. Vegan community ecology package version 2.5 – 7 November 2020. https://cran.r-project.org/package=vegan
  57. Oliveira Costa L.E., de, Queiroz M.V., de, Borges A.C., Moraes C.A., de, Araújo E.F., de, 2012. Isolation and characterization of endophytic bacteria isolated from the leaves of the common bean (Phaseolus vulga- ris) // Braz. J. Microbiol. V. 43. P. 1562–1575.
  58. Onipchenko V., 2002. Alpine Vegetation of the Teberda Reserve, the Northwest Caucasus. Zürich: Veröffentlichungen des Geobotanischen Institutes der ETH, Stiftung Rübel. 168 р.
  59. Onipchenko V., 2004. Alpine Ecosystems in the Northwest Caucasus. Dordrecht: Kluwer Academic Publishers. 407 р.
  60. Padda K.P., Puri A., Nguyen N.K., Philpott T.J., Chanway C.P., 2022. Evaluating the rhizospheric and endophytic bacterial microbiome of pioneering pines in an aggregate mining ecosystem post-disturbance // Plant Soil. V. 474. № 1–2. P. 213–232.
  61. Pangesti N., Pineda A., Hannula S.E., Bezemer T.M., 2020. Soil inoculation alters the endosphere microbiome of chrysanthemum roots and leaves // Plant Soil. V. 455. № 1. P. 107–119.
  62. Pant B.-D., Pant P., Erban A., Huhman D., Kopka J., Scheible W.-R., 2015. Identification of primary and secondary metabolites with phosphorus status-dependent abundance in rabidopsis, and of the transcription factor PHR1 as a major regulator of metabolic changes during phosphorus limitation // Plant Cell Environ. V. 38. № 1. P. 172–187.
  63. Quast C., Pruesse E., Yilmaz P., Gerken J., Schweer T., et al., 2013. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools // Nucleic Acids Res. V. 41. № D1. P. D590–D596.
  64. Redford A.J., Bowers R.M., Knight R., Linhart Y., Fierer N., 2010. The ecology of the phyllosphere: Geographic and phylogenetic variability in the distribution of bacteria on tree leaves // Environ. Microbiol. V. 12. № 11. P. 2885–2893.
  65. Řeháková K., Chroňáková A., Krištůfek V., Kuchtová B., Čapková K., et al., 2015. Bacterial community of cushion plant Thylacospermum ceaspitosum on elevational gradient in the Himalayan cold desert // Front. Microbiol. V. 6. Art. 304.
  66. Roca-Couso R., Flores-Félix J.D., Deb S., Giagnoni L., Tondello A., et al., 2024. Metataxonomic analysis of endophytic bacteria of blackberry (Rubus ulmifolius Schott) across tissues and environmental conditions // Sci. Rep. V. 14. № 1. P. 133–188.
  67. Romero F.M., Marina M., Pieckenstain F.L., 2014. The communities of tomato (Solanum lycopersicum L.) leaf endophytic bacteria, analyzed by 16S-ribosomal RNA gene pyrosequencing // FEMS Microbiol. Lett. V. 351. № 2. P. 187–194.
  68. Scherling C., Ulrich K., Ewald D., Weckwerth W., 2009. A metabolic signature of the beneficial interaction of the endophyte Paenibacillus sp. isolate and in vitro-grown poplar plants revealed by metabolomics // Mol. Plant Microbe Interact. V. 22. № 8. P. 1032–1037.
  69. Schlaeppi K., Dombrowski N., Oter R.G., Ver Loren van Themaat E., Schulze-Lefert P., 2014. Quantitative divergence of the bacterial root microbiota in Arabidopsis thaliana relatives // Proc. Natl Acad. Sci. V. 111. № 2. P. 585–592.
  70. Seabloom E.W., Caldeira M.C., Davies K.F., Kinkel L., Knops J.M.H., et al., 2023. Globally consistent response of plant microbiome diversity across hosts and continents to soil nutrients and herbivores // Nat. Commun. V. 14. № 1. Art. 3516.
  71. Sonam W., Liu Y., Guo L., 2023. Endophytic bacteria in the periglacial plant Potentilla fruticosa var. albicans are influenced by habitat type // Ecol. Processes. V. 12. № 1. Art. 57.
  72. Sturz A.V., Christie B.R., Matheson B.G., Nowak J., 1997. Biodiversity of endophytic bacteria which colonize red clover nodules, roots, stems and foliage and their influence on host growth // Biol. Fertil. Soils. V. 25. № 1. P. 13–19.
  73. Subedi S.C., Allen P., Vidales R., Sternberg L., Ross M., Afkhami M.E., 2022. Salinity legacy: Foliar microbiome’s history affects mutualist-conferred salinity tolerance // Ecology. V. 103. № 6. Art. e3679.
  74. Tamang A., Swarnkar M., Kumar P., Kumar D., Pandey S.S., Hallan V., 2023. Endomicrobiome of in vitro and natural plants deciphering the endophytes-associated secondary metabolite biosynthesis in Picrorhiza kurrooa, a Himalayan medicinal herb // Microbiol. Spectrum. V. 11. № 6. Art. e0227923.
  75. Thomas P., Reddy K.M., 2013. Microscopic elucidation of abundant endophytic bacteria colonizing the cell wall–plasma membrane peri-space in the shoot-tip tissue of banana // AoB Plants. V. 5. Art. plt011.
  76. Toju H., Kurokawa H., Kenta T., 2019. Factors influencing leaf- and root-associated communities of bacteria and fungi across 33 plant orders in a grassland // Front. Microbiol. V. 10. Art. 241.
  77. Trivedi P., Leach J.E., Tringe S.G., Sa T., Singh B.K., 2020. Plant–microbiome interactions: From community assembly to plant health // Nat. Rev. Microbiol. V. 18. № 11. P. 607–621.
  78. Vandenkoornhuyse P., Quaiser A., Duhamel M., Le Van A., Dufresne A., 2015. The importance of the microbiome of the plant holobiont // New Phytol. V. 206. № 4. P. 1196–1206.
  79. Wallace J., Laforest-Lapointe I., Kembel S.W., 2018. Variation in the leaf and root microbiome of sugar maple (Acer saccharum) at an elevational range li-mit // Peer J. V. 6. Art. e5293.
  80. Wang J., Pan Z., Yu J., Zhang Z., Li Y., 2023a. Global assembly of microbial communities // mSystems. V. 8. № 3. Art. e0128922.
  81. Wang X., Wang M., Wang L., Feng H., He X., et al., 2022. Whole-plant microbiome profiling reveals a novel geminivirus associated with soybean stay-green disease // Plant Biotechnol. J. V. 20. № 11. P. 2159–2173.
  82. Wang X., Yuan Z., Ali A., Yang T., Lin F., et al., 2023b. Leaf traits and temperature shape the elevational patterns of phyllosphere microbiome // J. Biogeogr. V. 50. № 12. P. 2135–2147.
  83. Wassermann B., Cernava T., Müller H., Berg C., Berg G., 2019. Seeds of native alpine plants host unique microbial communities embedded in cross-kingdom networks // Microbiome. V. 7. № 1. Art. 108.
  84. Wei G., Ning K., Zhang G., Yu H., Yang S., et al., 2021. Compartment niche shapes the assembly and network of Cannabis sativa-associated microbiome // Front. Microbiol. V. 12. Art. 714993.
  85. Xiong C., Singh B.K., He J.-Z., Han Y.-L., Li P.-P., et al., 2021b. Plant developmental stage drives the differentiation in ecological role of the maize microbiome // Microbiome. V. 9. № 1. Art. 171.
  86. Xiong C., Zhu Y.-G., Wang J.-T., Singh B., Han L.-L., et al., 2021a. Host selection shapes crop microbiome assembly and network complexity // New Phytol. V. 229. № 2. P. 1091–1104.
  87. Yao H., Sun X., He C., Li X.-C., Guo L.-D., 2020. Host identity is more important in structuring bacterial epiphytes than endophytes in a tropical mangrove forest // FEMS Microbiol. Ecol. V. 96. № 4. Art. fiaa038.
  88. Zamioudis C., Pieterse C.M.J., 2012. Modulation of host immunity by beneficial microbes // Mol. Plant Microbe Interact. V. 25. № 2. P. 139–150.
  89. Zhang J., Sun S., Wang G., Chen P., Hu Z., Sun X., 2022a. Composition and diversity of endophytic diazotrophs within the pioneer plants in a newly formed glacier floodplain on the eastern Tibetan Plateau // Plant Soil. V. 481. № 1. P. 253–267.
  90. Zhang X., Ma Y.-N., Wang X., Liao K., He S., et al., 2022b. Dynamics of rice microbiomes reveal core vertically transmitted seed endophytes // Microbiome. V. 10. № 1. Art. 216.
  91. Zhang Y., Liu S., Huang X., Zi H., Gao T., et al., 2023. Altitude as a key environmental factor shaping microbial communities of tea green leafhoppers (Matsumurasca onukii) // Microbiol. Spectrum. V. 11. № 6. Art. e0100923.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».