Olfactory orientation in urodele amphibians

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The olfactory organ of Urodela amphibians appears to be phylogenetically ancestral type for terrestrial vertebrates. Due to their complex biphasic life cycle, these amphibians are an interesting object for studying olfactory orientation. The magnitude of movements of Urodela is not large, however, they can return to a breeding pond or home range from distances far exceeding natural movements. Olfaction potentially plays a significant role in this process. Laboratory experiments have shown the ability of newts and salamanders to discriminate between different odor sources: the water of breeding pond, shelters, and the scent marks of conspecifics. However, the results of field experiments which test directly the role of olfaction in the homing process are quite ambiguous. There is also still little data on natal philopatry and its mechanisms. It is not known whether Urodela have olfactory imprinting similar to that of fish and Anura. Although some evidences support the presence of imprinting. Further study of the olfactory orientation of Urodela will improve understanding of the evolution of this system in vertebrates and methods of amphibians conservation.

About the authors

Y. A. Vyatkin

Lomonosov Moscow State University, Faculty of Biology, Department of Vertebrate Zoology

Email: yaroslav.vyatkin.1997@mail.ru
Leninskie Gory, 1, bld. 12, Moscow, 119234 Russia

V. V. Shakhparonov

Lomonosov Moscow State University, Faculty of Biology, Department of Vertebrate Zoology; Biological Station Rybachy, Zoological Institute of RAS

Email: wshakh@yandex.ru
Leninskie Gory, 1, bld. 12, Moscow, 119234 Russia; Rybachy, Kaliningrad Region, 238535 Russia

References

  1. Бастаков В.А., 1992. Экспериментальное исследование запоминания запаха водоема в процессе личиночного развития у двух видов Anura // Зоол. журн. Т. 71. № 10. С. 123–127.
  2. Зорина З.А., Полетаева И.И., Резникова Ж.И., 1999. Основы этологии и генетики поведения. М.: Изд-во МГУ, Высш. шк. 383 с.
  3. Кузьмин С.Л., 2012. Земноводные бывшего СССР. М.: КМК. 370 с.
  4. Марголис С.Э., Мантейфель Ю.Б., 1978. Сенсорные системы и поведение хвостатых амфибий. М.: Наука. 163 с.
  5. Медведева И.М., 1975. Орган обоняния амфибий и его филогенетическое значение. Л.: Наука. 173 с.
  6. Наумов Н.П., 1973. Сигнальные (биологические) поля и их значение для животных // Журн. общ. биологии. Т. 34. № 6. С. 808–817.
  7. Огурцов С.В., 2004. Запоминание запаха родного водоема как один из механизмов хемосенсорной ориентации бесхвостых амфибий. Дисс. … канд. биол. наук. М.: МГУ им. М.В. Ломоносова. 337 с.
  8. Огурцов С.В., 2007. Влияние экспозиции в химических стимулах в ходе личиночного развития на поведение сеголеток трех видов бесхвостых амфибий после метаморфоза // Соврем. герпетология. Т. 7. № 1/2. С. 88–97.
  9. Огурцов С.В., 2012. Проблема многофакторности при изучении хемоориентации сеголеток сухопутных видов амфибий // Зоол. журн. Т. 91. № 11. С. 1330–1339.
  10. Понугаева А.Г., 1973. Импринтинг (запечатлевание). Л.: Наука. Ленингр. отд. 103 с.
  11. Шахпаронов В.В., Огурцов С.В., 2008. Сезонная и географическая изменчивость ориентационного поведения озерной лягушки (Rana ridibunda) при поиске своего водоема // Зоол. журн. Т. 87. № 9. С. 1062–1076.
  12. Able K.P., 1993. Orientation cues used by migratory birds: A review of cue-conflict experiments // Trends Ecol. Evol. V. 8. № 10. P. 367–371. https://doi.org/10.1016/0169-5347(93)90221-A
  13. Adler K., 1980. Individuality in the use of orientation cues by green frogs // Anim. Behav. V. 28. № 2. P. 413–425. https://doi.org/10.1016/S0003-3472(80)80050-9
  14. Adler K., 1982. Sensory aspects of amphibian navigation and compass orientation // Vertebr. Нungarica. V. 21. P. 7–18.
  15. An Y., Guan X., Ni Y., Zhao Y., Chen Z., et al., 2020. Reversible olfactory dysfunction impaired learning and memory with impaired hippocampal synaptic plasticity and increased corticosterone release in mice // Neurochem. Int. V. 138. https://doi.org/10.1016/j.neuint.2020.104774
  16. Arzt A.H., Silver W.L., Mason J.R, Clark L., 1986. Olfactory responses of aquatic and terrestrial tiger salamanders to airborne and waterborne stimuli // J. Comp. Physiol. A. V. 158. № 4. P. 479–487. https://doi.org/10.1007/BF00603794
  17. Ashton R.E., 1975. A study of movement, home range, and winter behavior of Desmognathus fuscus (Rafinesque) // J. Herpetol. V. 9. № 1. P. 85–91. https://doi.org/10.2307/1562694
  18. Barbour R.W., Hardin J.W., Schafer J.P., Harvey M.J., 1969. Home range, movements, and activity of the dusky salamander, Desmognathus fuscus // Copeia. V. 1969. № 2. P. 293–297. https://doi.org/10.2307/1442077
  19. Barthalmus G.T., Bellis E.D., 1969. Homing in the northern dusky salamander, Desmognathus fuscus fuscus (Rafinesque) // Copeia. V. 1969. № 1. P. 148–153. https://doi.org/10.2307/1441704
  20. Barthalmus G.T., Bellis E.D., 1972. Home range, homing and the homing mechanism of the Salamander, Desmognathus fuscus // Copeia. V. 1972. № 4. P. 632–642. https://doi.org/10.2307/1442722
  21. Beebee T.J., Griffiths R.A., 2005. The amphibian decline crisis: A watershed for conservation biology? // Biol. Conserv. V. 125. № 3. P. 271–285. https://doi.org/10.1016/j.biocon.2005.04.009
  22. Bell G., 1979. Populations of crested newts, Triturus cristatus, in Oxfordshire, England // Copeia. V. 1979. № 2. P. 350–353. https://doi.org/10.2307/1443426
  23. Bett N.N., Hinch S.G., 2016. Olfactory navigation during spawning migrations: A review and introduction of the Hierarchical Navigation Hypothesis // Biol. Rev. Camb. Philos. Soc. V. 91. № 3. P. 728–759. https://doi.org/10.1111/brv.12191
  24. Bett N.N., Hinch S.G., Dittman A.H., Yun S.S., 2016. Evidence of olfactory imprinting at an early life stage in pink salmon (Oncorhynchus gorbuscha) // Sci. Rep. V. 6. № 1. https://doi.org/10.1038/srep36393
  25. Camp C.D., Lee T.P., 1996. Intraspecific spacing and interaction within a population of Desmognathus quadramaculatus // Copeia. V. 1996. № 1. P. 78–84. https://doi.org/10.2307/1446943
  26. Collins J., 2010. Amphibian decline and extinction: What we know and what we need to learn // Dis. Aquat. Organ. V. 92. № 3. P. 93–99. https://doi.org/10.3354/dao02307
  27. Cooper J.C., Hasler A.D., 1976. Electrophysiological studies of morpholine-imprinted coho salmon (Oncorhynchus kisutch) and rainbow trout (Salmo gairdneri) // J. Fish. Res. Board Canada. V. 33. № 4. P. 688–694. https://doi.org/10.1139/f76-085
  28. Cummings B.F., 1912. Distant orientation in amphibia // Proc. Zool. Soc. London. V. 82. № 1. P. 8–19. https://doi.org/10.1111/j.1469-7998.1912.tb07000.x
  29. Czeloth H., 1930. Untersuchungen über die Raumorientierung von Triton // Z. vergl. Physiol. V. 13. № 1. P. 74–163. https://doi.org/10.1007/BF00338723
  30. Dawley E.M., 1984. Recognition of individual, sex and species odours by salamanders of the Plethodon glutinosus-P. jordani complex // Anim. Behav. V. 32. № 2. P. 353–361. https://doi.org/10.1016/S0003-3472(84)80268-7
  31. Dawley E.M., 1992. Sexual dimorphism in a chemosensory system: The role of the vomeronasal organ in salamander reproductive behavior // Copeia. V. 1992. № 1. P. 113–120. https://doi.org/10.2307/1446542
  32. Dawley E.M., 2017. Comparative morphology of plethodontid olfactory and vomeronasal organs: How snouts are packed // Herpetol. Monogr. V. 31. № 1. P. 169–209. https://doi.org/10.1655/HERPMONOGRAPHS-D-15- 00008.1
  33. Deitchler E., Davenport J., Winsor L., 2015. Homing behavior of the northern spring salamander, Gyrinophilus porphyriticus, in a northeastern United States headwater stream // Herpetol. Conserv. Biol. V. 184. № 1. P. 235–241.
  34. Diego-Rasilla F.J., 2003. Homing ability and sensitivity to the geomagnetic field in the alpine newt, Triturus alpestris // Ethol. Ecol. Evol. V. 15. № 3. P. 251–259. https://doi.org/10.1080/08927014.2003.9522670
  35. Diego-Rasilla F.J., Luengo R.M., 2007. Acoustic orientation in the palmate newt, Lissotriton helveticus // Behav. Ecol. Sociobiol. V. 61. № 9. P. 1329–1335. https://doi.org/10.1007/s00265-007-0363-9
  36. Diego-Rasilla F.J., Phillips J.B., 2021. Evidence for the use of a high-resolution magnetic map by a short-distance migrant, the alpine newt (Ichthyosaura alpestris) // J. Exp. Biol. V. 224. № 13. https://doi.org/10.1242/jeb.238345
  37. Diego-Rasilla J., Luengo R., 2002. Celestial orientation in the marbled newt (Triturus marmoratus) // J. Ethol. V. 20. № 2. P. 137–141. https://doi.org/10.1007/s10164-002-0066-7
  38. Dingle H., Drake V.A., 2007. What is migration? // Bioscience. V. 57. № 2. P. 113–121. https://doi.org/10.1641/B570206
  39. Dole J.W., 1971. Dispersal of recently metamorphosed leopard frogs, Rana pipiens // Copeia. V. 1971. № 2. P. 221–228. https://doi.org/10.2307/1442821
  40. Douglas M.E., Monroe B.L., 1981. A comparative study of topographical orientation in ambystoma (Amphibia: Caudata) // Copeia. V. 1981. № 2. P. 460–463. https://doi.org/10.2307/1444239
  41. Dumas P., Chris B., 1998. The olfaction in Proteus anguinus: A behavioural and cytological study // Behav. Processes. V. 43. № 2. P. 107–113. https://doi.org/10.1016/S0376-6357(98)00002-3
  42. Eisthen H.L., 1992. Phylogeny of the vomeronasal system and of receptor cell types in the olfactory and vomeronasal epithelia of vertebrates // Microsc. Res. Tech. V. 23. № 1. P. 1–21. https://doi.org/10.1002/jemt.1070230102
  43. Eisthen H.L., 2002. Why are olfactory systems of different animals so similar? // Brain. Behav. Evol. V. 59. № 5–6. P. 273–293. https://doi.org/10.1098/rstb.2000.0669
  44. Endler J., 1970. Kinesthetic orientation in the California newt (Taricha torosa) // Behaviour. V. 37. № 1–2. P. 15–23. https://doi.org/10.1163/156853970X0020410.1098/rstb. 2000.0669
  45. Faccio S.D., 2003. Postbreeding emigration and habitat use by Jefferson and spotted salamanders in Vermont // J. Herpetol. V. 37. № 3. P. 479–489. https://doi.org/10.1670/155-02A
  46. Ferguson D.E., Landreth H.F., Mckeown J.P., 1967. Sun compass orientation of the northern cricket frog, Acris crepitans // Anim. Behav. V. 15. № 1. P. 45–53. https://doi.org/10.1016/S0003-3472(67)80009-5
  47. Forester D.C., 1977. Comments on the female reproductive cycle and philopatry by Desmognathus ochrophaeus (Amphibia, Urodela, Plethodontidae) // J. Herpetol. V. 11. № 3. P. 311–317. https://doi.org/10.2307/1563243
  48. Frost D.R., American Museum of Natural History, 2024. Amphibian Species of the World: an Online Reference. Version 6.2. https://amphibiansoftheworld.amnh.org/index.php
  49. Gamble L.R., McGarigal K., Compton B.W., 2007. Fidelity and dispersal in the pond-breeding amphibian, Ambystoma opacum: Implications for spatio-temporal population dynamics and conservation // Biol. Conserv. V. 139. № 3–4. P. 247–257. https://doi.org/10.1016/j.biocon.2007.07.00110.2307/ 1563243
  50. Gautier P., Lena J.P., Miaud C., 2004. Responses to conspecific scent marks and the ontogeny of territorial marking in immature terrestrial salamanders // Behav. Ecol. Sociobiol. V. 55. № 5. P. 447–453. https://doi.org/10.1007/s00265-003-0732-y
  51. Gautier P.G., Miaud C., 2003. Faecal pellets used as an economic territorial marker in two terrestrial alpine salamanders // Écoscience. V. 10. № 2. P. 134–139. https://doi.org/10.1080/11956860.2003.11682759
  52. Gautier P., Olgun K., Uzum N., Miaud C., 2006. Gregarious behaviour in a salamander: attraction to conspecific chemical cues in burrow choice // Behav. Ecol. Sociobiol. V. 59. № 6. P. 836–841. https://doi.org/10.1007/s00265-005-0130-8
  53. Gerlach G., Tietje K., Biechl D., Namekawa I., Schalm G., Sulmann A., 2019. Behavioural and neuronal basis of olfactory imprinting and kin recognition in larval fish // J. Exp. Biol. V. 222. Art. jeb189746. https://doi.org/10.1242/jeb.189746
  54. Gill D.E., 1978a. The metapopulation ecology of the red-spotted newt, Notophthalmus viridescens (Rafinesque) // Ecol. Monogr. V. 48. № 2. P. 145–166. https://doi.org/10.2307/2937297
  55. Gill D.E., 1978b. Effective population size and interdemic migration rates in a metapopulation of the red-spotted newt, Notophthalmus viridescens (Rafinesque) // Evolution (N.Y.). V. 32. № 4. P. 839–849. https://doi.org/10.2307/2407498
  56. Gill D.E., 1979. Density dependence and homing behavior in adult red-spotted newts Notophthalmus viridescens (Rafinesque) // Ecology. V. 60. № 4. P. 800–813. https://doi.org/10.2307/1936616
  57. Glandt D., 1985. Behavioural response and reproduction of adult newts, genus Triturus (Amphibia, Urodela) following long-distance displacement // Bonn Zool. Beitr. V. 36. № 1/2. P. 69–79.
  58. Gorman R.R., Ferguson J.H., 1970. Sun-compass orientation in the western toad, Bufo boreas // Herpetologica. V. 26. № 1. P. 34–45.
  59. Grant D., Anderson O., Twitty V., 1968. Homing orientation by olfaction in newts (Taricha rivularis) // Science. V. 160. № 3834. P. 1354–1356. https://doi.org/10.1126/science.160.3834.1354
  60. Griffiths R.A., 1984. Seasonal behaviour and intrahabitat movements in an urban population of smooth newts, Triturus vulgaris (Amphibia: Salamandridae) // J. Zool. V. 203. № 2. P. 241–251. https://doi.org/10.1111/j.1469-7998.1984.tb02330.x
  61. Grubb J.C., 1973. Orientation in newly metamorphosed mexican toads, Bufo valliceps // Herpetologica. V. 29. № 2. P. 95–100.
  62. Hamed M.K., 2008. Monitoring non-breeding habitat activity by subterranean detection of Ambystomatid salamanders with implanted passive integrated transponder (PIT) tags and a radio frequency identification (RFID) antenna system // Herpetol. Rev. V. 39. № 3. P. 303–306.
  63. Hasler A.D., Scholz A.T., 1978. Olfactory imprinting in Сoho Salmon (Oncorhynchus kisutch) // Animal Migration, Navigation, and Homing. Proceedings in Life Sciences. Heidelberg: Springer. P. 356–369. https://doi.org/10.1007/978-3-662-11147-5_3610.1111/ j.1469-7998.1984.tb02330.x
  64. Hayne D.W., 1949. Calculation of size of home range // J. Mammal. V. 30. № 1. P. 1–18. https://doi.org/10.2307/1375189
  65. Hayward R., Oldham R., Watt P., Head S.M., 2000. Dispersion patterns of young great crested newts (Triturus cristatus) // Herpetol. J. V. 10. № 1. P. 129–136.
  66. Healy W.R., 1975a. Terrestrial activity and home range in efts of Notophthalmus viridescens // Am. Midl. Nat. V. 93. № 1. P. 131–138.
  67. Healy W.R., 1975b. Breeding and postlarval migrations of the red-spotted newt, Notophthalmus viridescens, in Massachusetts // Ecology. V. 56. № 3. P. 673–680. https://doi.org/10.2307/1375189
  68. Hershey J.L., Forester D.C., 1980. Sensory orientation in Notophthalmus v. viridescens (Amphibia: Salamandridae) // Can. J. Zool. V. 58. № 2. P. 266–276. https://doi.org/10.1139/z80-032
  69. Holomuzki J.R., 1982. Homing behavior of Desmognathus ochrophaeus along a stream // J. Herpetol. V. 16. № 3. P. 307–309. https://doi.org/10.2307/1563722
  70. Horne E.A., Jaeger R.G., 1988. Territorial pheromones of female red-backed salamanders // Ethology. V. 78. № 2. P. 143–152. https://doi.org/10.1111/j.1439-0310.1988.tb00225.x
  71. Hurlbert S.H., 1969. The breeding migrations and interhabitat wandering of the vermilion-spotted newt Notophthalmus viridescens (Rafinesque) // Ecol. Monogr. V. 39. № 4. P. 465–488. https://doi.org/10.2307/1942356
  72. Hurlbert S.H., 1970. The post-larval migration of the red-spotted newt Notophthalmus viridescens (Rafinesque) // Copeia. V. 1970. № 3. P. 515–528. https://doi.org/10.2307/1442279
  73. Immelmann K., 1972. Sexual and other long-term aspects of imprinting in birds and other species // Adv. Stud. Behav. V. 4. P. 147–174. https://doi.org/10.1016/S0065-3454(08)60009-1
  74. Irwin D.E., Price T., 1999. Sexual imprinting, learning and speciation // Heredity (Edinb). V. 82. № 4. P. 347–354. https://doi.org/10.1038/sj.hdy.6885270
  75. Jaeger R.G., Fortune D., Hill G., Palen A., Risher G., 1993. Salamander homing behavior and territorial pheromones: Alternative hypotheses // J. Herpetol. V. 27. № 2. P. 236–239.
  76. Jaeger R.G., Gergits W.F., 1979. Intra- and interspecific communication in salamanders through chemical signals on the substrate // Anim. Behav. V. 27. № 2. P. 150–156. https://doi.org/10.1016/0003-3472(79)90134-9
  77. Jaeger R.G., Goy J.M., Tarver M., Márquez C.E., 1986. Salamander territoriality: Pheromonal markers as advertisement by males // Anim. Behav. V. 34. № 3. P. 860–864. https://doi.org/10.1016/S0003-3472(86)80071-9
  78. Jander R., 1975. Ecological aspects of spatial orientation // Annu. Rev. Ecol. Syst. V. 6. № 1. P. 171–188. https://doi.org/10.1146/annurev.es.06.110175.001131
  79. Jehle R., Arntzen J.W., 2000. Post-breeding migrations of newts (Triturus cristatus and T. marmoratus) with contrasting ecological requirements // J. Zool. V. 251. № 3. P. 297–306. https://doi.org/10.1017/S0952836900007032
  80. Johnson R.P., 1973. Scent marking in mammals // Anim. Behav. V. 21. № 3. P. 521–535. https://doi.org/10.1016/S0003-3472(73)80012-0
  81. Johnson S.A., 2003. Orientation and migration distances of a pond-breeding salamander (Notophthalmus perstriatus, Salamandridae) // Alytes. V. 21. № 1–2. P. 3–22.
  82. Joly P., Miaud C., 1989. Fidelity to the breeding site in the alpine newt Triturus alpestris // Behav. Processes. V. 19. № 1–3. P. 47–56. https://doi.org/10.1016/0376-6357(89)90030-2
  83. Joly P., Miaud C., 1993. How does a newt find its pond? The role of chemical cues in migrating newts (Triturus alpestris) // Ethol. Ecol. Evol. V. 5. № 4. P. 447–455.
  84. Jongh H.J., de, Gans C., 1969. On the mechanism of respiration in the bullfrog, Rana catesbeiana: A reassessment // J. Morphol. V. 127. № 3. P. 259–289. https://doi.org/10.1002/jmor.1051270302
  85. Kleeberger S.R., 1985. Influence of intraspecific density and cover on home range of a plethodontid salamander // Oecologia. V. 66. № 3. P. 404–410. https://doi.org/10.1007/BF00378306
  86. Kleeberger S.R., Werner J.K., 1982. Home range and homing behavior of Plethodon cinereus in Northern Michigan // Copeia. V. 1982. № 2. P. 409–415. https://doi.org/10.2307/1444622
  87. Kleeberger S.R., Werner J.K., 1983. Post-breeding migration and summer movement of Ambystoma maculatum // J. Herpetol. V. 17. № 2. P. 176–177. https://doi.org/10.2307/1563459
  88. Kovtun M.F., Stepanyuk Y.V., 2015. The development of olfactory organ of Lissotriton vulgaris (Amphibia, Caudata) // Vestn. Zool. V. 49. № 6. P. 559–566. https://doi.org/10.1515/vzoo-2015-0066
  89. Kramer P., Reichenbach N., Hayslett M., Sattler P., 1993. Population dynamics and conservation of the peaks of otter salamander, Plethodon hubrichti // J. Herpetol. V. 27. № 4. P. 431–435. https://doi.org/10.2307/1564832
  90. Kusano T., Miyashita K., 1984. Dispersal of the salamander, Hynobius nebulosus tokyoensis // J. Herpetol. V. 18. № 3. P. 349–353. https://doi.org/10.2307/1564094
  91. Landler L., 2022. Orientation and emigration of larval and juvenile amphibians: Selected topics and hypotheses // Amphibia-Reptilia. V. 43. № 1. P. 1–11. https://doi.org/10.1163/15685381-bja10081
  92. Landreth H.F., Ferguson D.E., 1967a. Newt orientation by sun-compass // Nature. V. 215. № 5100. P. 516–518. https://doi.org/10.1038/215516a0
  93. Landreth H.F., Ferguson D.E., 1967b. Newts: Sun-compass orientation // Science. V. 158. № 3807. P. 1459–1461. https://doi.org/10.1126/science.158.3807.1459
  94. Lindquist S.B., Bachmann M.D., 1982. The role of visual and olfactory cues in the prey catching behavior of the tiger salamander, Ambystoma tigrinum // Copeia. V. 1982. № 1. P. 81–90. https://doi.org/10.2307/1444271
  95. Liu Y., Burmeister S.S., 2017. Sex differences during place learning in the túngara frog // Anim. Behav. V. 128. P. 61–67. https://doi.org/10.1016/j.anbehav.2017.04.002
  96. Lorenz K.Z., 1937. The companion in the bird’s world // Auk. V. 54. № 3. P. 245–273. https://doi.org/10.2307/4078077
  97. Madison D.M., 1969. Homing behaviour of the red-cheeked salamander, Plethodon jordani // Anim. Behav. V. 17. № 2. P. 25–39. https://doi.org/10.1016/0003-3472(69)90109-2
  98. Madison D.M., 1972. Homing orientation in salamanders: A mechanism involving chemical clues // Animal Orientation and Navigation. Washington: NASA. P. 485– 498. https://ntrs.nasa.gov/api/citations/19720017442/downloads/19720017442.pdf
  99. Madison D.M., 1975. Intraspecific odor preferences between salamanders of the same sex: Dependence on season and proximity of residence // Can. J. Zool. V. 53. № 9. P. 1356–1361. https://doi.org/10.1139/z75-161
  100. Madison D.M., 1977. Chemical communication in amphibians and reptiles // Chemical Signals in Vertebrates. Boston: Springer US. P. 135–168. https://doi.org/10.1007/978-1-4684-2364-8_9
  101. Madison D.M., Livingston F., 1998. Habitat use during breeding and emigration in radio-implanted tiger salamanders, Ambystoma tigrinum // Copeia. V. 1998. № 2. P. 402–410. https://doi.org/10.2307/1447434
  102. Madison D.M., Shoop C.R., 1970. Homing behavior, orientation, and home range of salamanders tagged with tantalum-182 // Science. V. 168. № 3938. P. 1484–1487. https://doi.org/10.1126/science.168.3938.1484
  103. Martin J.B., Witherspoon N.B., Keenleyside M.H., 1974. Analysis of feeding behavior in the newt Notophthalmus viridescens // Can. J. Zool. V. 52. № 2. P. 277–281. https://doi.org/10.1139/z74-034
  104. Marty P., Angélibert S., Giani N., Joly P., 2005. Directionality of pre- and post-breeding migrations of a marbled newt population (Triturus marmoratus): Implications for buffer zone management // Aquat. Conserv. Mar. Freshw. Ecosyst. V. 15. № 3. P. 215–225. https://doi.org/10.1002/aqc.672
  105. Marvin G.A., 1998. Territorial behavior of the plethodontid salamander Plethodon kentucki: influence of habitat structure and population density // Oecologia. V. 114. № 1. P. 133–144. https://doi.org/10.1007/s004420050429
  106. Mathis A., 1991. Territories of male and female terrestrial salamanders: costs, benefits, and intersexual spatial associations // Oecologia. V. 86. № 3. P. 433–440. https://doi.org/10.1007/BF00317613
  107. Mathis A., Jaeger R., Keen W., Ducey P., Walls S., Buchanan B., 1995. Aggression and territoriality by salamanders and a comparison with the territorial behaviour of frogs // Amphibian Biology. V. 2. Social Behavior / Eds Heathole H., Sullivan B.K. Chipping Norton: Surrey Beatty and Sons. P. 633–676.
  108. McGregor J.H., Teska W.R., 1989. Olfaction as an orientation mechanism in migrating Ambystoma maculatum // Copeia. V. 1989. № 3. P. 779–781. https://doi.org/10.2307/1445516
  109. Merchant H., 1972. Estimated population size and home range of the salamanders Plethodon jordani and Plethodon glutinosus // J. Washingt. Acad. Sci. V. 62. № 3. P. 248–257.
  110. Nevitt G.A., Dittman A.H., Quinn T.P., Moody W.J., 1994. Evidence for a peripheral olfactory memory in imprinted salmon // Proc. Natl Acad. Sci. V. 91. № 10. P. 4288–4292. https://doi.org/10.1073/pnas.91.10.4288
  111. Ogurtsov S.V., 2004. Olfactory orientation in anuran amphibians // Russ. J. Herpetol. V. 11. № 1. P. 35–40.
  112. Ogurtsov S.V., 2005. Basis of native pond fidelity in anuran amphibians: The case of chemical learning // Russ. J. Herpetol. V. 12. Suppl. P. 198–200.
  113. Ogurtsov S.V., Antipov V.A., Permyakov M.G., 2018. Sex differences in exploratory behaviour of the common toad, Bufo bufo // Ethol. Ecol. Evol. V. 30. № 6. P. 543–568. https://doi.org/10.1080/03949370.2018.1459864
  114. Ogurtsov S.V., Bastakov V.A., 2001. Imprinting on native pond odour in the pool frog, Rana lessonae cam // Chemical Signals in Vertebrates. Boston: Springer US. P. 433–438. https://doi.org/10.1007/978-1-4615-0671-3_59
  115. Omland K.S., 1998. Orientation based on ambient directional information by red-spotted newts (Notophthalmus viridescens) // Behaviour. V. 135. № 6. P. 757–775. https://doi.org/10.1163/156853998792640459
  116. Orloff S.G., 2011. Movement patterns and migration distances in an upland population of California tiger salamander (Ambystoma californiense) // Herpetol. Conserv. Biol. V. 6. № 2. P. 266–276.
  117. Ortega Á., Zhulin I.B., Krell T., 2017. Sensory repertoire of bacterial chemoreceptors // Microbiol. Mol. Biol. Rev. V. 81. № 4. https://doi.org/10.1128/mmbr.00033-17
  118. Ousterhout B.H., Liebgold E.B., 2010. Dispersal versus site tenacity of adult and juvenile red-backed salamanders (Plethodon cinereus) // Herpetologica. V. 66. № 3. P. 269–275. https://doi.org/10.1655/09-023.1
  119. Packer W.C., 1960. Bioclimatic influences on the breeding migration of Taricha rivularis // Ecology. V. 41. № 3. P. 509–517. https://doi.org/10.2307/1933325
  120. Papi F. (ed.), 1992. Animal Homing. Dordrecht: Springer Netherlands. 390 p. https://doi.org/10.1007/978-94-011-1588-9
  121. Pfennig D.W., Sherman P.W., Collins J.P., 1994. Kin recognition and cannibalism in polyphenic salamanders // Behav. Ecol. V. 5. № 2. P. 225–232. https://doi.org/10.1093/beheco/5.2.225
  122. Phillips C.A., Sexton O.J., 1989. Orientation and sexual differences during breeding migrations of the spotted salamander, Ambystoma maculatum // Copeia. V. 1989. № 1. P. 17–22. https://doi.org/10.2307/1445599
  123. Phillips J.B., Diego-Rasilla F.J., 2022. The amphibian magnetic sense(s) // J. Comp. Physiol. A. V. 208. № 5–6. P. 723–742. https://doi.org/10.1007/s00359-022-01584-9
  124. Pimentel R.A., 1960. Inter- and intrahabitat movements of the rough-skinned newt, Taricha torosa granulosa (Skilton) // Am. Midl. Nat. V. 63. № 2. P. 470–496. https://doi.org/10.2307/2422806
  125. Piraccini R., Cammarano M., Costa A., Basile M., Posillico M., et al., 2017. Habitat trees and salamanders: Conservation and management implications in temperate forests // For. Ecol. Manage. V. 384. P. 17–25. https://doi.org/10.1016/j.foreco.2016.10.048
  126. Placyk J.S. Jr., Graves B.M., 2002. Prey detection by vomeronasal chemoreception in a plethodontid salamander // J. Chem. Ecol. V. 28. № 5. P. 1017–1036. https://doi.org/10.1023/A:1015213918739
  127. Plasa V.L., 1979. Heimfindeverhalten bei Salamandra salamandra (L.) // Z. Tierpsychol. V. 51. № 2. P. 113–125.
  128. Poncelet G., Shimeld S.M., 2020. The evolutionary origins of the vertebrate olfactory system // Open Biol. V. 10. № 12. https://doi.org/10.1098/rsob.200330
  129. Quinn T.P., 1990. Current controversies in the study of salmon homing // Ethol. Ecol. Evol. V. 2. № 1. P. 49–63. https://doi.org/10.1080/08927014.1990.9525493
  130. Reiss J.O., Eisthen H.L., 2008. Comparative anatomy and physiology of chemical senses in amphibians // Sensory Evolution on the Threshold: Adaptations in Secondarily Aquatic Vertebrates. Berkeley: Univ. of California Press. P. 43–63. https://doi.org/10.1525/9780520934122-005
  131. Riberon A., Miaud C., 2000. Home range and shelter use in Salamandra lanzai (Caudata, Salamandridae) // Amphib. Reptil. V. 21. № 2. P. 223–226. https://doi.org/10.1163/156853800507390
  132. Roe A.W., Grayson K.L., 2008. Terrestrial movements and habitat use of juvenile and emigrating adult eastern red-spotted newts, Notophthalmus viridescens // J. Herpetol. V. 42. № 1. P. 22–30. https://doi.org/10.1670/07-040.1
  133. Romano A., Forcina G., Barbanera F., 2008. Breeding site selection by olfactory cues in the threatened northern spectacled salamander Salamandrina perspicillata (Savi, 1821) // Aquat. Conserv. Mar. Freshw. Ecosyst. V. 18. № 5. P. 799–805. https://doi.org/10.1002/aqc.890
  134. Romano A., Ruggiero A., 2008. Olfactory recognition of terrestrial shelters in female Northern Spectacled Salamanders Salamandrina perspicillata (Caudata, Salamandridae) // Phyllomedusa. V. 7. № 1. P. 3–10. https://doi.org/10.11606/issn.2316-9079.v7i1p3-10
  135. Roth G., 1976. Experimental analysis of the prey catching behavior of Hydromantes italicus Dunn (Amphibia, Plethodontidae) // J. Comp. Physiol. V. 109. № 1. P. 47–58. https://doi.org/10.1007/BF00663434
  136. Różański J.J., Żuwała K.D., 2020. Macro- and micromorphological remodeling of olfactory organs throughout the ontogeny of the fire salamander Salamandra salamandra (Linnaeus, 1758) // J. Morphol. V. 281. № 10. P. 1173–1190. https://doi.org/10.1002/jmor.21239
  137. Schabetsberger R., Jehle R., Maletzky A., Pesta J., Sztatecsny M., 2004. Delineation of terrestrial reserves for amphibians: post-breeding migrations of Italian crested newts (Triturus c. carnifex) at high altitude // Biol. Conserv. V. 117. № 1. P. 95–104.
  138. Scheer B.T., 1939. Homing instinct in salmon // Q. Rev. Biol. V. 14. № 4. P. 408–430. https://doi.org/10.1086/394593
  139. Schlegel P.A., 2008. Magnetic and other non-visual orientation mechanisms in some cave and surface urodeles // J. Ethol. V. 26. № 3. P. 347–359. https://doi.org/10.1007/s10164-007-0071-y
  140. Scholz A.T., Horrall R.M., Cooper J.C., Hasler A.D., 1976. Imprinting to chemical cues: The basis for home stream selection in salmon // Science. V. 192. № 4245. P. 1247–1249. https://doi.org/10.1126/science.1273590
  141. Semlitsch R.D., 1981. Terrestrial activity and summer home range of the mole salamander (Ambystoma talpoideum) // Can. J. Zool. V. 59. № 2. P. 315–322. https://doi.org/10.1139/z81-047
  142. Shakhparonov V.V., Bolshakova A.A., Koblikova E.O., Tsoi J.A., 2024. European common frogs determine migratory direction by inclination magnetic compass and show diurnal variation in orientation // J. Exp. Biol. V. 227. № 4. https://doi.org/10.1242/jeb.246150
  143. Shakhparonov V.V., Golovlev A.P., Grytsyshina E.E., Bolshakova A.A., 2022. Orientation in the European common frog Rana temporaria during the first wintering migration // J. Exp. Biol. V. 225. № 17. https://doi.org/10.1242/jeb.243761
  144. Shakhparonov V.V., Ogurtsov S.V., 2005. The role of the native pond odor in orientation of the green toad (Bufo viridis Laur.) youngs-of-the-year // Herpetologica Petropolitana. St. Petersburg: Proc. of the 12th Ord. Gen. Meeting Soc. Eur. Herpetol. P. 209–212.
  145. Shaykevich D.A., Pareja-Mejía D., Golde C., Pašukonis A., O’Connell L.A., 2025. Neural and sensory basis of homing behaviour in the invasive cane toad, Rhinella marina // Proc. R. Soc. B Biol. Sci. V. 292. № 2041. https://doi.org/10.1098/rspb.2025.0045
  146. Shipley W.U., 1963. The demonstration in the domestic guinea pig of a process resembling classical imprinting // Anim. Behav. V. 11. № 4. P. 470–474. https://doi.org/10.1016/0003-3472(63)90263-X
  147. Shoop C.R., 1965. Orientation of Ambystoma maculatum: movements to and from breeding ponds // Science. V. 149. № 3683. P. 558–559. https://doi.org/10.1126/science.149.3683.558
  148. Shoop C.R., 1968. Migratory orientation of Ambystoma maculatum: movements near breeding ponds and displacements of migrating individuals // Biol. Bull. V. 135. № 1. P. 230–238. https://doi.org/10.2307/1539630
  149. Shoop C.R., Doty T.L., 1972. Migratory orientation by marbled salamanders (Ambystoma opacum) near a breeding area // Behav. Biol. V. 7. № 1. P. 131–136. https://doi.org/10.1016/S0091-6773(72)80195-0
  150. Simon G.S., Madison D.M., 1984. Individual recognition in salamanders: Cloacal odours // Anim. Behav. V. 32. № 4. P. 1017–1020. https://doi.org/10.1016/S0003-3472(84)80215-8
  151. Simons R.S., Bennett W.O., Brainerd E.L., 2000. Mechanics of lung ventilation in a post-metamorphic salamander, Ambystoma tigrinum // J. Exp. Biol. V. 203. № 6. P. 1081–1092. https://doi.org/10.1242/jeb.203.6.1081
  152. Sinsch U., 1987. Orientation behaviour of toads (Bufo bufo) displaced from the breeding site // J. Comp. Physiol. A. V. 161. № 5. P. 715–727. https://doi.org/10.1007/BF00605013
  153. Sinsch U., 1990. Migration and orientation in anuran amphibians // Ethol. Ecol. Evol. V. 2. № 1. P. 65–79. https://doi.org/10.1080/08927014.1990.9525494
  154. Sinsch U., 1991. Mini-review: The orientation behaviour of amphibians // Herpetol. J. V. 1. № 54. P. 541–544.
  155. Sinsch U., 2007. Initial orientation of newts (Triturus vulgaris, T. cristatus) following short- and long-distance displacements // Ethol. Ecol. Evol. V. 19. № 3. P. 201–214. https://doi.org/10.1080/08927014.2007.9522562
  156. Sinsch U., 2014. Movement ecology of amphibians: from individual migratory behaviour to spatially structured populations in heterogeneous landscapes // Can. J. Zool. V. 92. № 6. P. 491–502. https://doi.org/10.1139/cjz-2013-0028
  157. Sinsch U., Kirst C., 2016. Homeward orientation of displaced newts (Triturus cristatus, Lissotriton vulgaris) is restricted to the range of routine movements // Ethol. Ecol. Evol. V. 28. № 3. P. 312–328. https://doi.org/10.1080/03949370.2015.1059893
  158. Sinsch U., Schäfer R., Sinsch A., 2006. The homing behaviour of displaced smooth newts Triturus vulgaris // Herpetologia Bonnensis II. Proc. of the 13th Congress of the Societas Europaea Herpetologica. P. 163–166.
  159. Sluckin W., 1968. Imprinting in guinea-pigs // Nature. V. 220. № 5172. P. 1148–1148. https://doi.org/10.1038/2201148a0
  160. Smith A., Green D., 2005. Dispersal and the metapopulation paradigm in amphibian ecology and conservation: Are all amphibian populations metapopulations? // Ecography (Cop.). V. 28. № 1. P. 110–128. https://doi.org/10.1111/j.0906-7590.2005.04042.x
  161. Sokolov L., 2000. Philopatry, dispersal and population structure of passerines on the Courish Spit of the Baltic Sea // Vogelwarte. V. 40. № 4. P. 302–314.
  162. Sotelo M.I., Daneri M.F., Bingman V.P., Muzio R.N., 2024. Amphibian spatial cognition, medial pallium and other supporting telencephalic structures // Neurosci. Biobehav. Rev. V. 163. https://doi.org/10.1016/j.neubiorev.2024.105739
  163. Stabell O.B., 1992. Olfactory control of homing behaviour in salmonids // Fish Chemoreception. Dordrecht: Springer Netherlands. P. 249–270. https://doi.org/10.1007/978-94-011-2332-7_12
  164. Stenhouse S.L., 1985. Migratory orientation and homing in Ambystoma maculatum and Ambystoma opacum // Copeia. V. 1985. № 3. P. 631–637. https://doi.org/10.2307/1444754
  165. Stuelpnagel J.T., Reiss J.O., 2005. Olfactory metamorphosis in the coastal giant salamander (Dicamptodon tenebrosus) // J. Morphol. V. 266. № 1. P. 22–45. https://doi.org/10.1002/jmor.10365
  166. Sullivan A.M., Madison D.M., Rohr J.R., 2004. Variation in the antipredator responses of three sympatric plethodontid salamanders to predator-diet cues // Herpetologica. V. 60. № 4. P. 401–408. https://doi.org/10.1655/03-71
  167. Tracy C.R., 1971. Evidence for the use of celestial cues by dispersing immature California toads (Bufo boreas) // Copeia. V. 1971. № 1. P. 145–147. https://doi.org/10.2307/1441608
  168. Tristram D.A., 1977. Intraspecific olfactory communication in the terrestrial salamander Plethodon cinereus // Copeia. V. 1977. № 3. P. 597–600. https://doi.org/10.2307/1443294
  169. Twitty V.C., 1959. Migration and speciation in newts // Science. V. 130. № 3391. P. 1735–1743. https://doi.org/10.1126/science.130.3391.1735
  170. Twitty V., Grant D., Anderson O., 1964. Long distance homing in the newt Taricha rivularis // Proc. Natl Acad. Sci. V. 51. № 1. P. 51–58. https://doi.org/10.1073/pnas.51.1.51
  171. Twitty V., Grant D., Anderson O., 1966. Course and timing of the homing migration in the newt Taricha rivularis // Proc. Natl Acad. Sci. V. 56. № 3. P. 864–871. https://doi.org/10.1073/pnas.56.3.864
  172. Twitty V., Grant D., Anderson O., 1967. Initial homeward orientation after long-distance displacements in the newt Taricha rivularis // Proc. Natl Acad. Sci. V. 57. № 2. P. 342–348. https://doi.org/10.1073/pnas.57.2.342
  173. Ueda H., 2012. Physiological mechanisms of imprinting and homing migration in Pacific salmon Oncorhynchus spp. // J. Fish Biol. V. 81. № 2. P. 543–558. https://doi.org/10.1111/j.1095-8649.2012.03354.x
  174. Uiblein F., Durand J.P., Juberthie C., Parzefall J., 1992. Predation in caves: The effects of prey immobility and darkness on the foraging behaviour of two salamanders, Euproctus asper and Proteus anguinus // Behav. Processes. V. 28. № 1–2. P. 33–40. https://doi.org/10.1016/0376-6357(92)90046-G
  175. Vélez A., Gordon N.M., Bee M.A., 2017. The signal in noise: Acoustic information for soundscape orientation in two North American tree frogs // Behav. Ecol. V. 28. № 3. P. 844–853. https://doi.org/10.1093/beheco/arx044
  176. Verell P.A., 1987. The directionality of migrations of amphibians to and from a pond in southern England, with particular reference to the smooth newt, Triturus vulgaris // Amphibia-Reptilia. V. 8. № 2. P. 93–100. https://doi.org/10.1163/156853887X00360
  177. Verrell P.A., 1985. Return to water by juvenile amphibians at a pond in southern England // Amphibia-Reptilia. V. 6. № 1. P. 93–96. https://doi.org/10.1163/156853885X00227
  178. Vignoli L., Silici R., Bissattini A.M., Bologna M.A., 2012. Aspects of olfactory mediated orientation and communication in Salamandrina perspicillata (Amphibia Caudata): An experimental approach // Ethol. Ecol. Evol. V. 24. № 2. P. 165–173. https://doi.org/10.1080/03949370.2011.591437
  179. Vyatkin Y.A., Shakhparonov V.V., 2024. Learning the native pond odor as one of the mechanisms of olfactory orientation in juvenile smooth newt Lissotriton vulgaris // J. Comp. Physiol. A. V. 210. № 1. P. 57–63. https://doi.org/10.1007/s00359-023-01640-y
  180. Weber L., Růžička J., Tuf I.H., Rulík M., 2023. Migration strategy of the great crested newt (Triturus cristatus) in an artificial pond // Herpetozoa. V. 36. P. 345–356. https://doi.org/10.3897/herpetozoa.36.e112826
  181. Weiss L., Manzini I., Hassenklöver T., 2021. Olfaction across the water-air interface in anuran amphibians // Cell Tissue Res. V. 383. № 1. P. 301–325. https://doi.org/10.1007/s00441-020-03377-5
  182. Wells K.D., 2007. The Ecology and Behavior of Amphibians. Chicago; L.: Univ. of Chicago Press. 1148 p.
  183. White G.C., Garrott R.A., 1990. Analysis of Wildlife Radio-Tracking Data. N.Y.: Academic Press. 383 p.
  184. Whitford W.G., Vinegar A., 1966. Homing, survivorship, and overwintering of larvae in spotted salamanders, Ambystoma maculatum // Copeia. V. 1966. № 3. P. 515–519. https://doi.org/10.2307/1441075
  185. Whitham J., Mathis A., 2000. Effects of hunger and predation risk on foraging behavior of graybelly salamanders, Eurycea multiplicata // J. Chem. Ecol. V. 26. № 7. P. 1659–1665. https://doi.org/10.1023/A:1005590913680
  186. Woolbright L.L., Martin C.P., 2014. Seasonal migration by red-backed salamanders, Plethodon cinereus // J. Herpetol. V. 48. № 4. P. 546–551. https://doi.org/10.1670/12-074
  187. Yamamoto Y., Hino H., Ueda H., 2010. Olfactory imprinting of amino acids in lacustrine sockeye salmon // PLoS One. V. 5. № 1. https://doi.org/10.1371/journal.pone.0008633

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».