Quantum-chemical study of the reaction of urea with ethylene glycol under zinc lactate catalysis
- Авторлар: Samuilov A.Y.1, Elpashev A.S.1, Samuilov Y.D.1
-
Мекемелер:
- Kazan National Research Technological University
- Шығарылым: Том 95, № 7–8 (2025)
- Беттер: 305-318
- Бөлім: Articles
- URL: https://journal-vniispk.ru/0044-460X/article/view/323757
- DOI: https://doi.org/10.31857/S0044460X25070077
- EDN: https://elibrary.ru/spuxkh
- ID: 323757
Дәйексөз келтіру
Аннотация
The reaction of urea with ethylene glycol to form ethylene carbonate catalyzed by zinc lactate was studied by the quantum-chemical density functional method B3LYP. The interaction proceeds in two stages. In the first stage, 2-hydroxyethylcarbamate is formed, which is transformed to ethylene carbonate and ammonia in the second stage. The stage limiting the reaction rate is the first stage. Four independent routes for the formation of 2-hydroxyethylcarbamate were revealed. Both monomeric and dimeric glycol molecules take part in its formation. The routes involving dimeric glycol molecules are kinetically and thermodynamically more favorable. In the zinc lactate-catalyzed transformation of 2-hydroxyethylcarbamate into ethylene carbonate, ethylene glycol acts as an effective co-catalyst. This stage is essentially reversible. The use of super stoichiometric amounts of ethylene glycol, the use of elevated temperatures, and the removal of ammonia from the reaction medium are factors that allow the successful production of ethylene carbonate by urea glycolysis under zinc lactate catalysis.
Негізгі сөздер
Авторлар туралы
A. Samuilov
Kazan National Research Technological University
Email: ysamuilov@yandex.ru
Kazan, 420015 Russia
A. Elpashev
Kazan National Research Technological University
Email: ysamuilov@yandex.ru
Kazan, 420015 Russia
Ya. Samuilov
Kazan National Research Technological University
Хат алмасуға жауапты Автор.
Email: ysamuilov@yandex.ru
Kazan, 420015 Russia
Әдебиет тізімі
- Yi W.B., Gao X., Zhang W. Biorenewable Solvents for Organic Synthesis. Sham: Springer, 2024. 48 p.
- Yang J., Wang Y., Liu Y., Duan G., Liang Z., Han J., Huang Y., Han X., Zhang C., He S., Jiang S. // Fuel. 2025. Vol. 379. P. 133048. doi: 10.1016/j.fuel.2024.133048
- Ye S., Wang S., Lin L., Xiao M., Meng Y. // Adv. Ind. Eng. Polym. Res. 2019. Vol. 2. N 4. P. 143. doi: 10.1016/j.aiepr.2019.09.004
- Wang L., Li Y., Yang J., Wu Q., Liang S., Liu Z. // Int. J. Mol. Sci. 2024. Vol. 25. N 5. P. 2938. doi: 10.3390/ijms25052938
- Kotanen S., Wirtanen T., Mahlberg R., Anghelescu-Hakala A., Harjunalanen T., Willberg-Keyrilainen P., Laaksonen T., Sarlin E. // J. Appl. Polym. Sci. 2023. Vol. 140. N 24. P. e53964. doi: 10.1002/app.53964
- Ban J.L., Li S.Q., Yi C.F., Zhao J.-B., Zhang Z.-Y., Zhang J.-Y. // Chin. Polym. Sci. 2019. Vol. 37. P. 43. doi: 10.1007/s10118-018-2165-0
- Seithümmer J., Knospe P., Reichmann R., Gutmann J.S., Hoffmann-Jacobsen K., Dornbusch M. // J. Coat. Technol. Res. 2023. Vol. 20, N 1. P. 173. doi: 10.1007/s11998- 022-00665-3
- Mundo F., Caillol S., Ladmiral V., Meier M.A. // ACS Sustain. Chem. Eng. 2024. Vol. 12. N 17. P. 6452. doi: 10.1021/acssuschemeng.4c01274
- Ryan T.A., Seddon E.A., Seddon K.R., Ryan C. Phosgene: and Related Carbonyl Halides. Amsterdam: Elsevier. 1996. 932 p.
- Mishr V., Peter S.C. // Chem Catal. 2024. Vol. 4. N 1. P. 100796. doi: 10.1016/j.checat.2023.100796
- Brege A., Grignard B., Méreau R., Detrembleur C., Jerome C., Tassaing T. // Catalysts. 2022. Vol. 12. N 2. P. 124. doi: 10.3390/catal12020124
- Han C., Wang R., Shu C., Li X., Li H., Gao X. // React. Chem. Eng. 2022. Vol. 7. N 12. P. 2636. doi: 10.1039/D2RE00289B
- Mota C.J. // Curr. Org. Chem. 2024. Vol. 28. N 4. P. 1069. doi: 10.2174/0113852728304402240403052919
- Kotyrba Ł., Chrobok A., Siewniak A. // Catalysts. 2022. Vol. 12. N 3. P. 309. doi: 10.3390/catal12030309
- Shukla K., Srivastava V.C. // Catal. Rev. 2017. Vol. 59. N 1. P. 1. doi: 10.1080/01614940.2016.126308843
- Ji X., Yang J., Zhao N. // Inorg. Chem. Commun. 2021. Vol. 134. P. 109061. doi: 10.1016/j.inoche.2021.109061
- Aresta M., Dibenedetto A., Nocito F., Ferragina C. // J. Catal. 2009. Vol. 268. N 1. P. 106. doi: 10.1016/j.jcat.2009.09.008
- Li Y., Liu H., Zheng Z., Fu Z., He D., Zhang Q. // Ind. Eng. Chem. Res. 2022. Vol. 61. N 17. P. 5698. doi: 10.1021/acs.iecr.2c00667
- Wang H., Cui Y., Shi J., Tao X., Zhu G. // Appl. Catal. (B). 2023. Vol. 330. P. 122457. doi: 10.1016/j.apcatb.2023.122457
- Grotjahn D.B. // Dalton Trans. 2008. Vol. 46. P. 6497. doi: 10.1039/b809274e
- Layek S., Agrahari B., Kumari S., Anuradha, Pathak D.D. // Catal. Lett. 2018. Vol. 148. P. 2675. doi: 10.1007/s10562-018-2449-6
- Sadek K.U., Mekheimer R.A., Abd-Elmonem M., Elnagdi M.H. // Appl. Organomet. Chem. 2020. Vol. 34. N 2. P. e5315. doi: 10.1002/aoc.5315
- Bifunctional Molecular Catalysis / Eds I. Takao, S. Masakatsu. London: Springer, 2011. 210 p.
- Non-covalent Interactions in the Synthesis and Design of New Compounds / Eds M.M. Abel, A.J.L. Pombeiro, K.T. Mahmudov, N. Maximilian, M.N. Kopylovich. Hoboken: Wiley, 2016. 460 p.
- Kricheldorf H.R., Damrau D.O. // Macromol. Chem. Phys. 1997. Vol. 198. N 6. P. 1753. doi: 10.1002/macp.1997.021980605
- Kreiser-Saunders I., Kricheldorf H.R. // Macromol. Chem. Phys. 1998. Vol. 199. N 6. P. 1081. doi: 10.1002/(SICI)1521-3935(19980601)199:6 <1081::AID-MACP1081>3.0.CO;2-2
- Zhang C., Liao L., Gong S. // J. Appl. Polym. Sci. 2008. Vol. 110. N 2. P. 1236. doi: 10.1002/app.28651
- Zhang Y., Qi Y., Yin Y., Li A., Zheng Q., Liang W. // ACS Sustain. Chem. Eng. 2020. Vol. 8. N 7. P. 2865. doi: 10.1021/acssuschemeng.9b06987
- Zheng M., Zeng S., Wang X., Gao X., Wang Q., Xu J., Deng F. // Magn. Reson. Lett. 2022. Vol. 2. N 4. P. 266. doi: 10.1016/j.mrl.2022.09.002
- Bakó I., Grósz T., Pálinkás G., Bellissent-Funel M.C. // J. Chem. Phys. 2003. Vol. 118. N 7. P. 3215. doi: 10.1063/1.1536163
- Baev A.K. Specific Intermolecular Interactions of Organic Compounds. Heidelberg: Springer, 2012. 434 p.
- Samuilov A., Samuilov Y. // New J. Chem. 2023. Vol. 47. N 38. P. 18027. doi: 10.1039/D3NJ04052F
- Bhadauria S., Saxena S., Prasad R., Sharma P., Prasad R., Dwivedi R. // Eur. J. Chem. 2012. Vol. 3. N 2. P. 235. doi: 10.5155/eurjchem.3.2.235-240.460
- Liu Sh. Exploring Chemical Concepts Through Theory and Computation. Weinheim: Wiley-VCH, 2024. 592 p.
- Smith M.B. Organic Chemistry. An Acid-Base Approach. Boca Raton: CRC Press, 2023. 692 p.
- Самуилов А.Я., Валеев А.Р., Балабанова Ф.Б., Самуилов Я.Д., Коновалов А.И. // ЖОрХ. 2013. Т. 49. № 1. С. 38; Samuilov A.Ya., Valeev A.R., Balabanova F.B., Samuilov Ya.D., Konovalov A.I. // Rus. J. Org. Chem. 2013. Vol. 49. N 1 P. 28. doi: 10.1134/S1070428013010065
- Wannenmacher A., Lu W., Amarasinghe C., Cerasoli F., Donadio D., Ahmed M. // J. Chem. Phys. 2024. Vol. 160. N 14. P. 144303. doi: 10.1063/5.0198162
- Sun R., Bai S., Sun Q. // Mater. Today Commun. 2023. Vol. 34. P. 105262. doi: 10.1016/j.mtcomm.2022.105262
- Fakhrnasova D., Chimentao R.J., Medina F., Urakawa A. //ACS Catal. 2015. Vol. 5. N 11. P. 6284. doi: 10.1021/acscatal.5b01575
- Самуилов А.Я., Валеев А.Р., Балабанова Ф.Б., Самуилов Я.Д., Коновалов А.И. // ЖОрХ. 2015. Т. 51. № 6. C. 853; Samuilov A.Ya., Valeev A.R., Balabanova F.B., Samuilov Ya.D., Konovalov A.I. // Russ. J. Org. Chem. 2015. Vol. 51. N 6 P. 836. doi: 10.1134/S1070428015060032
- Deng L., Sun W., Shi Z., Qian W., Su Q., Dong L., He H., Li Z., Cheng W. // J. Mol. Liq. 2020. Vol. 316. P. 113883. doi: 10.1016/j.molliq.2020.11388
- Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G.,Barone V., Mennucci B., Petersson G.A., Nakatsuji H., Caricato M., Li X., Hratchian H.P., Izmaylov A.F., Bloino J., Zheng G., Sonnenberg J.L., Hada M., EharaM., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., VrevenT., Montgomery J.A., Peralta J.E., Ogliaro F., Bearpark M., Heyd J.J., Brothers E., Kudin K.N., Staroverov V.N., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J.C., Iyengar S.S., Tomasi J., Cossi M., Rega N., Millam J.M., Klene M., Knox J.E., Cross J.B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R.E., Yazyev O., Austin A.J., Cammi R., Pomelli C., Ochterski J.W., Martin R.L. Morokuma K., Zakrzewski V.G., Voth G.A., Salvador P., Dannenberg J.J., Dapprich S., Daniels A.D., Farkas O., Foresman J.B., Ortiz J.V., Cioslowski J., Fox D.J. Gaussian 09, Revision A.1, Gaussian, Inc., Wallingford CT, 2009.
- Khan R.U., Tonner-Zech R. // J. Comput. Chem. 2025. Vol. 46. N 8. P. e70082. doi: 10.1002/jcc.70082
- Praveen P.A., Saravanapriya D., Bhat SV., Arulkannan K., Kanagasekaran T. // Mater. Sci. Semicond. 2024. Vol. 173. P. 108159. doi: 10.1016/j.mssp.2024.108159
- Henderson B., Donnecke S., Genin S.N., Ryabinkin I.G., Irina Paci I. // J. Phys. Chem. (C). 2024. Vol. 128. N 38. P. 15899. doi: 10.1021/acs.jpcc.4c03322
- Сталл Д., Вестрам Э., Зинке Г. Химическая термодинамика органических соединений. М.: Мир, 1971. 801 с.
Қосымша файлдар
