Extraction of Lanthanides(III) from Nitric Acid Solutions with Complexes of Biscarbamoylmethylphosphine Oxides with Bis[(trifluoromethyl)sulfonyl]imide

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The extraction of lanthanides(III) with solutions of biscarbamoylmethylphosphine oxide complexes with bis[(trifluoromethyl)sulfonyl]imide (HTf2N) was studied. It was found that lanthanide(III) ions are extracted from nitric acid solutions with solutions of such complexes by the cation exchange mechanism. The stoichiometry of the extracted lanthanide(III) complexes was determined, the influence of the structure of biscarbamoylmethylphosphine oxides, the nature of the organic solvent and the concentration of HNO3 in the aqueous phase on the efficiency of metal ion extraction into the organic phase was considered. It was found that the conversion of bis-CMPO into complexes with HTf2N leads to an increase in the extraction of lanthanide(III) ions from nitric acid solutions.

About the authors

A. N Turanov

Osipyan Institute of Solid State Physics of the Russian Academy of Sciences

ORCID iD: 0000-0002-5064-191X
Chernogolovka, Russia

V. K Karandashev

Institute of Microelectronics Technology and High Purity Materials of the Russian Academy of Sciences

Email: karan@iptm.ru
ORCID iD: 0000-0003-0684-272X
Chernogolovka, Russia

V. A Khvostikov

Institute of Microelectronics Technology and High Purity Materials of the Russian Academy of Sciences

ORCID iD: 0000-0002-2543-6842
Chernogolovka, Russia

References

  1. Myasoedov B.F., Kalmykov S.N. // Mendeleev Commun. 2015. Vol. 25. N 5. P. 319. doi: 10.10016/j.mencom.2015.09.001
  2. Horwitz E.P., Martin K.A., Diamond H., Kaplan L. // Solvent Extr. Ion Exch. 1986. Vol. 4. № 3. P. 449. doi: 10.1080/07366298608917877
  3. Чмутова М.К., Липениа М.Н., Прибылова Г.А., Иванова Л.А., Смирнов И.В., Шадрин А.Ю., Мясоедов Б.Ф. // Радиохимия. 1999. Т. 41. № 4. С. 331.
  4. Alyapyshev M.Yu., Babain V.A., Ustynюuk Yu.A. // Russ. Chem. Rev. 2016. Vol. 85. N 9. P. 943. doi: 10.1070/RCR4588
  5. Turanov A.N., Karandashev V.K., Yarkevich A.N. // Radiochemistry. 2021. Vol. 63. P. 454. doi: 10.1134/S1066362221040081
  6. Riano S., Foltova S.S., Binnemans K. // RSC Adv. 2020. Vol. 10. P. 307. doi: 10.1039/c9ra08996
  7. Raut D.R., Sharma S., Ghosh S.K., Mohapatra P.K. // Sep. Sci. Technol. 2017. Vol. 52. P. 1430. doi: 10.1080/01496395.2017.1290112
  8. Iqbal M., Waheed K., Rahat S.B., Mehmood T., Lee M.S. // J. Radioanal. Nucl. Chem. 2020. Vol. 325. P. 1. doi: 10.1007/s10967-020-07199-1
  9. Mohapatra P.K. // Chem. Prod. Proc. Model. 2015. Vol. 10. P. 135. doi: 10.1515/cppm-2014-0030
  10. Белова В.В. // Радиохимия. 2021. Т. 63. С. 3; Belova V.V. // Radiochemistry. 2021. Vol. 63. P. 1. doi: 10.1134/S106636222101001X
  11. Quijada-Maldonado E., Olea F., Supulveda R., Castillo J., Cabezos R., Merlet G., Romero J. // Sep. Pur. Technol. 2020. Vol. 251. 117289. doi: 10.1016/j.seppur.2020.117289
  12. Wang K., Adidharma H., Radosz M., Wan P., Xu X., Russell C.K., Tian H., Fan M., Yu J. // Green Chem. 2017. Vol. 19. P. 4469. doi: 10.1039/c7gc02141k
  13. Atanassova M. // J. Mol. Liq. 2021. Vol. 343. Art. 117530. doi ????
  14. Turanov A.N., Karandashev V.K., Yarkevich A.N. // Radiochemistry. 2022. Vol. 64. N 2. P. 163. doi: 10.1134/S106636222020072
  15. Gerasimov M.A., Pozdeev A.V., Evsinnina M.V., Kalle P., Yarenkov N.R., Borisova N.E., Manveev P.I. // Inorg. Chem. 2025. Vol. 63. P. 2109. doi: 10.1021/acs.inorgchem.3c03944
  16. Diò N., Dario Falcone R., Acuna A., Garcia-Rio L. // J. Mol. Liq. 2020. Vol. 304. 112762. doi: 10.1016/j.molliq.2020.112762
  17. Gaillard C., Boltoeva M., Billard I., Georg S., Mazan V., Ouadi A., Ternova D., Henning C. // ChemPhysChem. 2015. Vol. 16. P. 2653. doi: 10.1002/cphc.201500283
  18. Turanov A.N., Karandashev V.K. // Solv. Extr. Ion Exch. 2023. Vol. 41. P. 885. doi: 10.1080/07366299.2023.2249952
  19. Katsuta S., Watanabe Y., Araki Y., Kudo Y. // ACS Sust. Chem. Eng. 2016. Vol. 4. P. 564. doi: 10.1021/acssuschemeng.5b00976
  20. Turanov A.N., Karandashev V.K., Kostikova G.V., Fedoseev A.M. // Radiochemistry. 2023. Vol. 65. N 1. P. 39. doi: 10.1134/S106636222301006X
  21. Стоянов Е.С., Воробьева Т.П., Смирнов И.В. // ЖСХ. 2003. Т. 44. № 3. С. 414.
  22. Stoyanov E.S., Smirnov I.V., Fedotov M.A. // J. Phys. Chem. (A). 2006. Vol. 110. P. 9505. doi: 10.1021/jp0609838
  23. Stoyanov E.S., Smirnov I.V. // J. Mol. Struct. 2005. Vol. 740. P. 9. doi: 10.1016/j.molstruct.2004.12.037
  24. Binnemans K. // Chem. Rev. 2007. Vol. 107. P. 2593. doi: 10.1021/cr050979c
  25. Sharova E.V., Artyushin O.I., Nelyubina Yu.V., Lyssenko K.A., Passechnik M.P., Odinets I.L. // Russ. Chem. Bull. 2008. Vol. 57. N 9. P. 1890. doi: 10.1007/s11172-008-0255-9
  26. Yarkevich A.N., Brel V.K., Makhaeva G.F., Serebryakova O.G., Boltneva N.P., Kovaleva N.V. // Russ. J. Gen. Chem. 2015. Vol. 85. N 7. P. 1644. doi: 10.1134/S1070363215070129
  27. Turanov A.N., Karandashev V.K., Kharitonov A.N., Lezhnev A.N., Safronova Z.V., Yarkevich A.N., Tsvetkov E.N. // Russ. J. Gen. Chem. 1999. Vol. 69. N 7. P. 1068.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).