Self-Propagating High Temperature Synthesis of MAX Phases of Ti-Al-C System with Addition of B4C

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In this work self-propagating high-temperature synthesis was used to obtain Ti-Al-C system MAX phases in situ reinforced with TiB2 and TiC, from B4C, and powders of titan, aluminum and soot, the following reaction mechanisms were identified. During the synthesis on the air, the formation of nitride phases TiN and Ti2AlN was registered in synthesized material. The possibility of formation of ternary carbide with stoichiometry of Ti3AlC with cubic antiperovskite structure was demonstrated. Characteristic thermograms, acquired during synthesis and following deformation of investigated materials, are presented.

About the authors

P. A Stolin

Merzhanov Institute of Structural Macrokinetics and Materials Science Russian Academy of Sciences (ISMAN)

ORCID iD: 0000-0002-3063-4317
Chernogolovka, Russia

A. D Bazhina

Merzhanov Institute of Structural Macrokinetics and Materials Science Russian Academy of Sciences (ISMAN)

Email: arina@ism.ac.ru
ORCID iD: 0000-0003-0678-3379
Chernogolovka, Russia

I. A Nazarko

Merzhanov Institute of Structural Macrokinetics and Materials Science Russian Academy of Sciences (ISMAN)

Chernogolovka, Russia

A. E Kulikova

Merzhanov Institute of Structural Macrokinetics and Materials Science Russian Academy of Sciences (ISMAN)

Chernogolovka, Russia

A. S Ivanov

Merzhanov Institute of Structural Macrokinetics and Materials Science Russian Academy of Sciences (ISMAN)

ORCID iD: 0009-0004-6668-8300
Chernogolovka, Russia

M. S Antipov

Merzhanov Institute of Structural Macrokinetics and Materials Science Russian Academy of Sciences (ISMAN)

ORCID iD: 0000-0002-7498-428X
Chernogolovka, Russia

N. Yu Homenko

Merzhanov Institute of Structural Macrokinetics and Materials Science Russian Academy of Sciences (ISMAN)

Chernogolovka, Russia

References

  1. Sokol M., Natu V., Kota S., Barsoum M.W. // Trends Chem. 2019. Vol. 1. N 2. P. 210. doi: 10.1016/J.TRECHM.2019.02.016
  2. Gonzalez-Julian J. // J. Am. Ceram. Soc. 2021. Vol. 104. P. 65. doi: 10.1111/jace.17544
  3. Akhlaghi M., Salahi E., Tayebifard S.A., Schmidt G. // Synth. Sinter. 2022. Vol. 2. N 3. P. 138. doi: 10.53063/synsint.2022.2383
  4. Sun W., Shi Y., Wu C., Wei X., Zhang Y., Li G., Chen L., Ma C., Sun Z.M., Zhang P., Ding J. // J. Mater. Res. Technol. 2023. Vol. 27. P. 1968. doi: 10.1016/j.jjmrt.2023.10.057
  5. Kang X., Pu Z., Zheng M., Wu J., Xiang J., Wu F., Liu C. // J. Alloys Compd. 2024. Vol. 1008. N 9. P. 176862. doi: 10.1016/j.jallcom.2024.176862
  6. Shichalin O.O., Ivanov N.P., Seroshtan A.I., Nadaraia K.V., Simonenko T.L., Gurin M.S., Komakova Z.E., Shchitovskaya E.V., Barkhudarov K.V., Tsygankov D.K., Rinchinova V.B., Fedorets A.N., Buravlev I.Y., Ognev A.V., Papynov E.K. // Ceram. Int. 2024. Vol. 50. N 24. P. 53120. doi: 10.1016/j.ceramint.2024.10.161
  7. Nian Y., Zhang Z., Yang S., Liu M., Zhang K., Zhou X. // Vacuum. 2024. Vol. 224. doi: 10.1016/j.vacuum.2024.113158
  8. Min X., Xu G., Mei B. // Adv. Mater. Res. 2009. Vol. 66. P. 53. doi: 10.4028/ href='www.scientific.net/AMR.66.53' target='_blank'>www.scientific.net/AMR.66.53
  9. Wang W., Xu J., Ma K., Zhang Y., Li Y., Xue W., Duan D., Zuo J., Zhu P., Li M. // Tribol. Int. 2025. Vol. 212. doi: 10.1016/j.triboint.2025.110985
  10. Wang X.H., Zhou Y.C. // J. Mater. Sci. Technol. 2010. Vol. 26. N 5. P. 385. doi: 10.1016/S1005-0302(10)60064-3
  11. Yang J., Tan S., Xiao G., Wang B., Jiang W., Yang X., Zhang H. // Ceram. Int. 2024. Vol. 50. N 20. P. 39975. doi: 10.1016/j.ceramint.2024.07.381
  12. Li D., Liu C., Liu Y., Zhou L., Wang K., Wang L., Wang R. // Int. J. Refract. Met. Hard Mater. 2024. Vol. 125. doi: 10.1016/j.ijrmhm.2024.106904
  13. Li D., Liu Y., Liu C., Zhou L., Wang K., Hu Y., Wang R. // Ceram. Int. 2025. Vol. 51. N 3. P. 3432. doi: 10.1016/j.ceramint.2024.11.320
  14. Chizhikov A.P., Konstantinov A.S., Bazhin P.M. // Russ. J. Inorg. Chem. 2021. Vol. 66. N 8. P. 1115. doi: 10.31857/S0044457X21080031
  15. Lepakova O.K., Erekhova O.G., Kostikova V.A., Killer V.D. // Chem. Sustain Dev. 2004. Vol. 12. N 4. P. 443.
  16. Lapshin O.V., Boldyeva E.V., Boldyev V.V. // Russ. J. Inorg. Chem. 2021. Vol. 66. N 3. P. 433. doi: 10.1134/S0036023621030116
  17. Bazhin P.M., Kovalev D.Yu., Lugirina M.A., Averichev O.A. // Int. J Self-Propag. High-Temp. Synth. 2016. Vol. 25. N 1. P. 30. doi: 10.3103/S1061386216010027
  18. Zhang W., Gao L., Li J., Yang B., Jin Y. // Ceram. Int. 2011. Vol. 37. N 3. P. 783. doi: 10.1016/j.ceramint.2010.10.019
  19. Zhang W. // Nanotechnol. Rev. 2023. Vol. 12. N 1. P. 20220571. doi: 10.1515/ntrev-2022-0571.
  20. Kornienko Е.Е., Kuz’min V.I., Lozhkin V.S. // Met. Work. Mat. Sci. 2017. N 3(76). P. 42. doi: 10.17212/1994-6309-2017-3-42-50
  21. Gudym T.S., Khabirov R.R., Krutskii Y.L., Cherkasova N.Yu., Anisimov A.G., Semenov A.O. // Inorg. Mater. 2024. Vol. 60. P. 1496. doi: 10.1134/S0020168525700177
  22. Hou B., Wang A., Liu P., Xie J. // Nanotechnol. Rev. 2023. Vol. 12. N 1. P. 20220510. doi: 10.1515/ntrev-2022-0510
  23. Du Y. // Chin. Phys. Lett. 2009. Vol. 26. N 11. doi: 10.1088/0256-307X/26/11/117102
  24. Stolin A.M., Bazhin P.M., Konstantinov A.S., Alymov M.I. // Doklady Chem. 2018. Vol. 480. P. 136. doi: 10.1134/S0012500818060083
  25. Bazhin P.M., Stolin A.M., Konstantinov A.S., Kostitsyna E.V., Ignatov A.S. // Mater. 2016. Vol. 9. N 12. P. 1027. doi: 10.3390/ma9121027

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).