Влияние содопирования на электрические свойства магний и медьсодержащего ниобата висмута со структурой типа пирохлора

Обложка

Цитировать

Полный текст

Аннотация

В работе методом Печини получен содопированный рутением ниобат висмута Bi1.5Cu0.375Mg0.375Nb1.45Ru0.05O7-δ со структурой пирохлора. Методом структурного анализа установлено распределение Ru4+ в позициях Nb5+. По данным оптических спектров отражения выявлено уменьшение ширины запрещенной зоны от 2.40 до 2.27 эВ в допированном рутением образце. Показано, что даже незначительное количество рутения приводит к увеличению проводимости на 0.5 порядка относительно недопированного рутением Cu-Mg-замещенного ниобата висмута, обусловленной увеличением электронной составляющей проводимости.

Об авторах

И. В Пийр

Институт химии Федерального исследовательского центра «Коми научный центр Уральского отделения Российской академии наук»

Email: ipiir@mail.ru

М. С Королева

Институт химии Федерального исследовательского центра «Коми научный центр Уральского отделения Российской академии наук»

В. С Максимов

Институт химии Федерального исследовательского центра «Коми научный центр Уральского отделения Российской академии наук»;Сыктывкарский государственный университет имени Питирима Сорокина

Список литературы

  1. Subramanian M.A., Aravamudan G., Subba Rao G.V. // Prog. Solid State Chem. 1983. Vol. 15. P. 55. doi: 10.1016/0079-6786(83)90001-8
  2. Williford R.E., Weber W.J., Devanathan R., Gale J.D. // J. Electroceramics. 1999.Vol. 3. P. 409. doi: 10.1023/A:1009978200528
  3. D�az-Guill�n J.A., D�az-Guill�n M.R., Padmasree K.P., Fuentes A.F., Santamar�a J., Le�n C. // Solid State Ionics. 2008. Vol. 179. P. 2160. doi: 10.1016/j.ssi.2008.07.015
  4. Anantharaman A.P., Prasad H. // Ceram. Int.2020. Vol. 47. P. 4367. doi: 10.1016/j.ceramint.2020.10.012
  5. Gill J.K., Pandey O.P., Singh K. 2012. Vol. 37. P. 3857. doi: 10.1016/j.ijhydene.2011.04.216
  6. Da Silva S.A., Zanetti S.M. // Ceram. Int. 2009. Vol. 35. P. 2755. doi: 10.1016/j.ceramint.2009.03.022
  7. Dasin N.A.M., Tan K.B., Khaw C.C., Zainal Z., Lee O.J., Chen S.K. // Mater. Chem. Phys. 2020. Vol. 242. P. 122558. doi: 10.1016/j.matchemphys.2019.122558
  8. Dasin N.A.M., Tan K.B., Zainal Z., Khaw C.C., Chen S.K. // J. Electroceramics. 2019. Vol. 43. P. 41. doi: 10.1007/s10832-019-00188-1
  9. Ehora G., Daviero-Minaud S., Steil C., Gengembre L., Fr�re M., Bellayer S., Mentre O. // Chem. Mater. 2008. Vol. 20. P. 7425. doi: 10.1021/cm801942c
  10. Haas M.K., Cava R.J., Avdeev M., Jorgensen J.D. // Phys. Rev. (B). 2002. Vol. 66. P. 1. doi: 10.1103/PhysRevB.66.094429
  11. Koroleva M.S., Krasnov A.G., Senyshyn A., Sch�kel A., Shein I.R., Vlasov M.I., Piir I.V. // J. Alloys Compd. 2021. Vol. 858. P. 157742. doi: 10.1016/j.jallcom.2020.157742
  12. Koroleva M.S., Krasnov A.G., Osinkin D.A., Kellerman D.G., Stoporev A.S., Piir I.V. // Ceram. Int. 2022. doi: 10.1016/j.ceramint.2022.10.290
  13. Shiratori Y., Tietz F., Buchkremer H.P., St�ver D. // Solid State Ionics. 2003. Vol. 164. P. 27. doi: 10.1016/j.ssi.2003.08.019
  14. Hector A.L., Wiggin S.B. // J. Solid State Chem. 2004. Vol. 177. P. 139. doi: 10.1016/S0022-4596(03)00378-5
  15. Shannon R.D. // Acta Crystallogr. (A). 1976. Vol. 32. P. 751. doi: 10.1107/S0567739476001551
  16. Sadykov V.A., Koroleva M.S., Piir I.V., Chezhina N.V., Korolev D.A., Skriabin P.I., Krasnov A.V., Sadovskaya E.M., Eremeev N.F., Nekipelov S.V., Sivkov V.N. // Solid State Ionics. 2018. Vol. 315. P. 33. doi: 10.1016/j.ssi.2017.12.008
  17. Krasnov A.G., Kabanov A.A., Kabanova N.A., Piir I.V., Shein I.R. // Solid State Ionics. 2019. Vol. 335. P. 135. doi: 10.1016/j.ssi.2019.02.023
  18. Pirzada M., Grimes R.W., Minervini L., Maguire J.F., Sickafus K.E. // Solid State Ionics. 2001. Vol. 140. P. 201. doi: 10.1016/S0167-2738(00)00836-5
  19. Wilde P.J., Catlow C.R.A. // Solid State Ionics. 1998. Vol. 112. P. 173. doi: 10.1016/s0167-2738(98)00190-8
  20. Rodr�guez-Carvajal J. // Phys. Rev. (B). 1993. Vol. 192. P. 55. doi: 10.1016/0921-4526(93)90108-I

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2023

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».