Formation of Formic Acid and Its Esters in Oxidation of Fatty Acid Methyl Esters

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Pathways of formation of low-boiling products in the course of oxidation of fatty acid methyl esters with atmospheric oxygen in a bubbling column were studied. These products are continuously removed from the reactor under the action of high temperature at continuous air supply. Two kinds of feedstock with different content of esters of mono- and diunsaturated fatty acids (methyl esters of fatty acids of olive and sunflower oils) were used in the study. Along with acids and aldehydes forming the major fraction of low-boiling products, compounds containing ester groups were detected. The 1Н and 13С NMR analysis revealed the presence of formic acid esters in the samples. The formate formation mechanism involving the Baeyer–Villiger reaction of aldehydes with hydroperoxides in the reaction volume was suggested.

About the authors

E. A. Savel'ev

Mendeleev University of Chemical Technology of Russia, 125047, Moscow, Russia

Email: acjournal.nauka.nw@yandex.ru

A. D. Cherepanova

Mendeleev University of Chemical Technology of Russia, 125047, Moscow, Russia

Email: acjournal.nauka.nw@yandex.ru

V. N. Sapunov

Mendeleev University of Chemical Technology of Russia, 125047, Moscow, Russia

Author for correspondence.
Email: acjournal.nauka.nw@yandex.ru

References

  1. Horvat R. J., Mcfadden W. H., Ng H., Lee A., Fuller G., Applewhite T. H. Volatile products from room temperature autoxidation of cis,cis-6, 9-octadecadiene. Analysis by combined gas chromatography-mass spectrometry //j. Am. Oil Chem. Soc. 1969. V. 46. N 6. P. 273-276. https://doi.org/10.1007/bf02545002
  2. May W. A., Peterson R. J., Chang S. S. Chemical reactions involved in the deepfat frying of foods: IX. Identification of the volatile decomposition products of triolein //j. Am. Oil Chem. Soc. 1983. V. 60. N 5. P. 990-995. https://doi.org/10.1007/bf02660214
  3. Chang S. S., Peterson R. J., Ho C. T. Chemical reactions involved in the deep-fat frying of foods //j. Am. Oil Chem. Soc. 1978. V. 55. N 10. P. 718-727. https://doi.org/10.1007/bf02665369
  4. Сапунов В. Н., Юдаев С. А., Черепанова А. Д., Ивашкина Е. Н., Воронов М. С., Козловский Р. А. Особенности процесса эпоксидирования метиловых эфиров жирных кислот в барботажном реакторе // ЖПХ. 2020. Т. 93. № 5. С. 697-704. https://doi.org/10.31857/S0044461820050114
  5. Cherepanova A., Savelʹev E., Alieva L., Kuznetsova I., Sapunov V. A new green method for the production polyvinylchloride plasticizers from fatty acid methyl esters of vegetable oils //j. Am. Oil Chem. Soc. 2020. V. 97. N 11. P. 1265-1272. https://doi.org/10.1002/aocs.12415
  6. Guillén M. D., Ruiz A. Monitoring of heat-induced degradation of edible oils by proton NMR // Eur. J. Lipid Sci. Technol. 2008. V. 110. N 1. P. 52-60. https://doi.org/10.1002/ejlt.200600299
  7. Sacchi R., Falcigno L., Paduano A., Ambrosino M. L., Savarese M., Degiulio B., Addeo F., Paolillo L. Quantitative evaluation of the aldehydes formed in heated vegetable oils using high resolution proton-NMR spectroscopy // Riv. Ital. Sostanze Grasse. 2006. V. 82. P. 257-263.
  8. Alexandri E., Ahmed R., Siddiqui H., Choudhary M., Tsiafoulis C., Gerothanassis I. High resolution NMR spectroscopy as a structural and analytical tool for unsaturated lipids in solution // Molecules. 2017. V. 22. N 10. P. 1663-1690. https://doi.org/10.3390/molecules22101663
  9. Guillén M. D., Goicoechea E. Toxic oxygenated α,β- unsaturated aldehydes and their study in foods: A Review // Crit. Rev. Food Sci. Nutr. 2008. V. 48. N 2. P. 119-136. https://doi.org/10.1080/10408390601177613
  10. Frankel E. N. Lipid oxidation. Amsterdam: Elsevier, 1980. P. 89-90.
  11. Moumtaz S., Percival B. C., Parmar D., Grootveld K. L., Jansson P., Grootveld M. Toxic aldehyde generation in and food uptake from culinary oils during frying practices: Peroxidative resistance of a monounsaturate-rich algae oil // Sci. Reports. 2019. V. 9. N 1. P. 4125-4146. https://doi.org/10.1038/s41598-019-39767-1
  12. Frankel E. N. Chemistry of autoxidation: Mechanism, products and flavor significance // Eds D. B. Min, T. H. Smouse. Flavor chemistry of fats and oils. Champaign, III //j. Am. Oil Chem. Soc. 1985. P. 1-34.
  13. Flitsch S., Neu P. M., Schober S., Kienzl N., Ullmann J., Mittelbach M. Quantitation of aging products formed in biodiesel during the rancimat accelerated oxidation test // Energy Fuels. 2014. V. 28. N 9. P. 5849-5856. https://doi.org/10.1021/ef501118r
  14. Перкель А. Л., Воронина С. Г., Боркина Г. Г. Роль реакции Байера-Виллигера в процессах жидкофазного окисления органических соединений // Изв. АH. Сер. хим. 2018. Т. 67. № 5. С. 779-786. EDN: RPTCOF
  15. Pikh Z., Nebesnyi R., Ivasiv V., Pich A., Vynnytska S. Oxidation of unsaturated aldehydes by peracetic acid // Chem. Chem. Technol. 2016. V. 10. N 4. P. 401-411. https://doi.org/10.23939/chcht10.04.401
  16. Lehtinen C., Brunow G. Factors affecting the selectivity of air oxidation of 2-ethyhexanal, an a-branched aliphatic aldehyde // Org. Process. Res. Dev. 2000. V. 4. P. 544-549. https://doi.org/10.1021/op000045k
  17. Hassall C. H. The Baeyer-Villiger oxidation of aldehydes and ketones // Org. React. 2011. V. 9. P. 73- 106. https://doi.org/10.1002/0471264180.or009.03
  18. Yaremenko I. A., Vilʹ V. A., Demchuk D. V., Terentʹev A. O. Rearrangements of organic peroxides and related processes // Beilstein J. Org. Chem. 2016. V. 12. P. 1647-1748. https://doi.org/10.3762/bjoc.12.162
  19. Гольдман О. В., Перкель А. Л., Смирнова Т. Я., Фрейдин Б. Г. О превращении высших α-дикетонов под действием некоторых пероксидных продуктов окисления алканов // ЖПХ. 1984. Т. 57. № 8. С. 1830-1835.
  20. Krow G. R. The Baeyer-Villiger oxidation of ketones and aldehydes // Org. React. 1993. V. 43. P. 251-798. https://doi.org/10.1002/0471264180.or043.03
  21. Теренин А. Н. Фотоника молекул красителей и родственных органических соединений. Л.: Наука, 1967. С. 55-60.
  22. Garland R. M., Elrod M. J., Kincaid K., Beaver M. R., Jimenez J. L., Tolbert M. A. Acid-catalyzed reactions of hexanal on sulfuric acid particles: Identification of reaction products // Atmos. Environ. 2006. V. 40. N 35. P. 6863-6878. https://doi.org/10.1016/j.atmosenv.2006.07.009
  23. Abreu I., Da Costa N. C., van Es A., Kim J.-A., Parasar U., Poulsen M. L. Natural occurrence of aldol condensation products in valencia orange oil //j. Food Sci. 2017. V. 82. N 12. P. 2805-2815. https://doi.org/10.1111/1750-3841.13948
  24. Souza P. T., Silva W. L. G., Meirelles A. J. A., Tubino M. Monitoring the short-chain carboxylic acids produced during the storage of different fatty composition biodiesels and their binary blends using ion chromatography // Fuel. 2021. V. 289. P. 119943-119949. https://doi.org/10.1016/j.fuel.2020.119943
  25. deMan J. M., deMan L. Automated AOM test for fast stability //j. Am. Oil Chem. Soc.1984. V. 61. N 3. P. 534-536. https://doi.org/10.1007/BF02677024
  26. Souza P. T., Ansolin M., Batista E. A. C., Meirelles A. J. A., Tubino M. Kinetic of the formation of short-chain carboxylic acids during the induced oxidation of different lipid samples using ion chromatography // Fuel. 2017. V. 199. N 1. P. 239-247. https://doi.org/10.1016/j.fuel.2017.02.093
  27. Loury M. Possible mechanisms of autoxidative rancidity // Lipids. 1972. V. 7. P. 671-675. https://doi.org/10.1007/bf02533075
  28. Котельникова Т. С., Воронина С. Т., Перкелъ А. Л. Образование муравьиной кислоты и циклогексилформиата в процессе окисления циклогексана // ЖПХ. 2006. Т. 79. № 3. С. 424-428. EDN: HTBGFV
  29. deMan J. M., Tie F., deMan L. Formation of short chain volatile organic acids in the automated AOM method //j. Am. Oil Chem. Soc. 1987. V. 64. N 7. P. 993-996. https://doi.org/10.1007/bf02542435

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».