Reactive Extrusion of Multifunctional Conducting Nanocomposites Based on Polypropylene Random Copolymer and Ethylene–Propylene Block Copolymer

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The effect of extrusion parameters on the characteristics of nanocomposites based on polypropylene random copolymer and ethylene–propylene block copolymer with carbon black and aluminum nanoparticles and calcium stearate was studied. Printex XE 2-B carbon black with the nanoparticle size of 18–20 nm was used. Exхelor PO 1020 compatibilizer was used for improving the compatibility of the blend components. Introduction of the above fillers allows obtaining a multifunctional nanocomposite that exhibits high levels of electrical conductivity, adhesion to metals, and thermal conductivity and can be processed by pressure casting and extrusion. The effect of the temperature conditions in the extruder material cylinder on the breaking stress and relative elongation of the nanocomposites was considered. The optimum temperature conditions of the extrusion, ensuring relatively high properties of the composite, were determined.

About the authors

N. T. Kakhramanov

Institute of Polymer Materials, Ministry of Science and Education of Azerbaijan Republic

Email: acjournal.nauka.nw@yandex.ru
AZ5004, Sumgait, Azerbaijan

Kh. V. Allakhverdieva

Institute of Polymer Materials, Ministry of Science and Education of Azerbaijan Republic

Author for correspondence.
Email: acjournal.nauka.nw@yandex.ru
AZ5004, Sumgait, Azerbaijan

References

  1. Bouaziz A., Massardier V., Louizi M., Jaziri M. Reinforcement of polyolefins-based nanocomposites: Сombination of compatibilizer with high shear extrusion process // Polym. Eng. Sci. 2015. V. 55. N 10. P. 2328-2338. https://doi.org/10.1002/pen.24120
  2. Müller K., Bugnicourt E., Latorre M., Jorda M., Echegoyen Sanz Y., Lagoran J. M., Miesbauer O., Bianchin A., Hankin S., Bolz U., Perez G., Jesdinszki M., Lindner M., Scheuerer Z., Castello S., Schmid M. Review on the processing and properties of polymer nanocomposites and nanocoatings and their applications in the packaging, automotive and solar energy fields // Nanomaterials. 2017. V. 7. N 4. ID 74. https://doi.org/10.3390/nano7040074
  3. Симонов-Емельянов И. Д., Кулезнев В. Н., Трофимичева Л. З. Обобщенные параметры дисперсной структуры наполненных полимеров // Пласт. массы. 1989. № 1. С. 19-22.
  4. Shen J., Li J., Guo S. The distribution and morphological evolution of dispersed phase in laminating-multiplying elements during extrusion // Polym.Compos. 2012. V. 33. N 5. P. 693-699. https://doi.org/10.1002/pc.22193
  5. Sakai T. Screw extrusion technology-Past, present and future // Polimery. 2013. V. 58. P. 847-857. https://doi.org/10.14314/polimery.2013.847
  6. Altinkaynak A., Gupta M., Spalding M. A., Crabtree S. L. An investigation of the effect of screw geometry on melting in a single-screw extruder // Proceedings of the Annual Technical Conference - ANTEC, Conference Proceedings. Orlando, FL, USA, 16-20 May 2010. P. 1508-1515.
  7. Wang X., Zhao J., Chen M., Ma L., Zhao X., Dang Z.-M., Wang Z. Improved self-healing of polyethylene/carbon black nanocomposites by their shape memory effect //j. Phys. Chem. B. 2013. V. 117. P. 1467-1474. https://doi.org/10.1021/jp3098796
  8. Huang Y., Meng X., Xie Y., Wan L., Lv Z., Cao J., Feng J. Friction stir welding/processing of polymers and polymer matrix composites // Composites Part A: Appl. Sci. Manufacturing. 2018. V. 105. P. 235-257. https://doi.org/10.1016/j.compositesa.2017.12.005
  9. Lapshin S., Swain S. K., Isayev A. I. Ultrasound aided extrusion process for preparation of polyolefin-clay nanocomposites // Polym. Eng. Sci. 2008. V. 48. N 8. P. 1584-1591. https://doi.org/10.1002/pen.21135
  10. Fernandes C., Faroughi S. A., Ferrás L. L., Afonso A. M. Advanced polymer simulation and processing // Polymers. 2022. V. 14. N 12. 2480. https://doi.org/10.3390/polym14122480
  11. Zhu J., Abeykoon C., Karim N. Investigation into the effects of fillers in polymer processing // Int. J. Lightweight Mater. Manuf. 2021. V. 4. N 3. P. 370-382. https://doi.org/10.1016/j.ijlmm.2021.04.003
  12. Jubinville D., Esmizadeh E., Saikrishnan S., Tzoganakis C., Mekonnen T. A Comprehensive review of global production and recycling methods of polyolefin (PO) based products and their post-recycling applications // Sustainable Mater. Technol. 2020. V. 25. ID e00188. https://doi.org/10.1016/j.susmat.2020.e00188
  13. Liu Y., Feng J. An attempt towards fabricating reduced graphene oxide composites with traditional polymer processing techniques by adding chemical reduction agents // Compos Sci. Technol. 2017. V. 140. P. 16-22. https://doi.org/10.1016/j.compscitech.2016.12.026
  14. Kakhrananov N. T., Allahverdiyeva Kh. V., Mustafayeva F. A., Nasibov Kh. N. Theoretical aspects of the injection molding process of multicomponent nanocomposites based on polyolefins // ChemChemTech. 2022. V. 65. N 1. Р. 83-91. https://doi.org/10.6060/ivkkt.20226501.6451
  15. Yang M., Li J., Guo S. A reactive extrusion process with the aid of ultrasound for preparing cross-linked polypropylene // Polym. Eng. Sci. 2017. V. 57. N 5. P. 821-829. https://doi.org/10.1002/pen.24457
  16. Zhang Q., Wang J., Zhang B.-Y., Guo B.-H., Yu J., Guo Z.-X. Improved electrical conductivity of polymer/carbon black composites by simultaneous dispersion and interaction-induced network assembly // Compos. Sci. Technol. 2019. V. 179. P. 106-114. https://doi.org/10.1016/j.compscitech.2019.05.008
  17. Mirzadeh A., Lafleur P. G., Kamal M. R., Dubois C. The effects of nanoclay dispersion levels and processing parameters on the dynamic vulcanization of TPV nanocomposites based on PP/EPDM prepared by reactive extrusion // Polym. Eng. Sci. 2012. V. 52. N 5. P. 1099-1110. https://doi.org/10.1002/pen.22178
  18. Карасева Ю. C., Башкатова Т. В., Черезова Е. Н., Хусаинов А. Д. Исследование продуктов взаимодействия полиэтилена с серой в качестве вулканизующих агентов // Вестн. Казан. технол. ун-та. 2006. № 5. С. 57-62.
  19. Sarkhel G., Choudhury A. Dynamic vulcanization of polyethylene-based thermoplastic elastomer blends //j. Appl. Polym. Sci. 2010. V. 115. N 1. P. 376-384. https://doi.org/10.1002/app.30285
  20. Долодкин Б. А., Донцов А. А. Взаимодействие полиэтилена с серой // Высокомолекуляр. соединения. 1961. Т. 3. № 11. С.1746-1754 [Dogadkin B. A., Dontsov A. A. The reaction between polyethylene and sulphur // Polym. Sci. U.S.S.R. 1962. V. 3. N 6. P. 1107-1117. https://doi.org/10.1016/0032-3950(62)90018-7].
  21. Кахраманов Н. Т., Аллахвердиева Х. В., Мустафаева Ф. А. Cтруктура и свойства электропроводящих композитов на основе полиолефинов и технического углерода // ЖПХ. 2022. Т. 95. № 8. С. 1011-1018. https://doi.org/10.31857/S0044461822080084 https://www.elibrary.ru/nxqexh
  22. Kakhramanov N. T., Allahverdiyeva Kh. V., Gahramanli Yu. N., Mustafayeva F. A. Martynova G. S. Physical-mechanical properties of multifunctional thermoplastic elastomers based on polyolefins and styrene-butadiene elastomer //j. Elastomers Plast. 2023. V. 55. N 2. P. 279-302. https://doi.org/10.1177/00952443221147030
  23. Allahverdiyeva Kh. V., Kakhramanov N. T., Martynova G. S., Mustafayeva F. A. Structural features and mechanism of crystallization of nanocomposites based on maleinated high density polyethylene and carbon black // Heliyon. 2023. V. 9. N 4. ID e14829. https://doi.org/10.1016/j.heliyon.2023.e14829

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».