Получение наноразмерных частиц альдегидсодержащих производных крахмала
- Authors: Golub N.V.1, Prystromova Y.I.1, Kosterova R.I.1, Alinovskaya V.A.1, Kuzich A.A.2, Yurkshovich T.L.1
-
Affiliations:
- Belarusian State University Research Institute of Physico-Chemical Problems
- Unitary Republican Enterprise 'UNITECHPROM BSU'
- Issue: Vol 98, No 4 (2025)
- Pages: 264-278
- Section: Высокомолекулярные соединения и материалы на их основе
- URL: https://journal-vniispk.ru/0044-4618/article/view/308949
- DOI: https://doi.org/10.31857/S0044461825040035
- EDN: https://elibrary.ru/lizrpb
- ID: 308949
Cite item
Abstract
About the authors
N. V. Golub
Belarusian State University Research Institute of Physico-Chemical Problems
Email: natali.golub@gmail.com
220006, Belarus, Minsk, Leningradskaya St., 14
Y. I. Prystromova
Belarusian State University Research Institute of Physico-Chemical Problems220006, Belarus, Minsk, Leningradskaya St., 14
R. I. Kosterova
Belarusian State University Research Institute of Physico-Chemical Problems220006, Belarus, Minsk, Leningradskaya St., 14
V. A. Alinovskaya
Belarusian State University Research Institute of Physico-Chemical Problems220006, Belarus, Minsk, Leningradskaya St., 14
A. A. Kuzich
Unitary Republican Enterprise 'UNITECHPROM BSU'220045, Belarus, Minsk, Kurchatova St., 1
T. L. Yurkshovich
Belarusian State University Research Institute of Physico-Chemical Problems220006, Belarus, Minsk, Leningradskaya St., 14
References
- Eloy J. O., Abriata J. P., Marchetti J. M. (Eds). Nanocarriers for drug delivery: Сoncepts and applications. Cham: Springer Nature Switzerland AG, 2021. 450 p. https://doi.org/10.1007:978-3-030-63389-9
- Бовина Е. М., Романов Б. К., Казаков А. С., Вельц Н. Ю., Журавлева Е. О., Букатина Т. М., Аляутдин Р. Н., Меркулов В. А. Наноразмерные лекарственные средства: особенности оценки безопасности // Безопасность и риск фармакотерапии. 2019. Т. 7. № 3. С.127–138. https://doi.org/10.30895/2312-7821-2019-7-3-127-138 [Bovina E. M., Romanov B. K., Kazakov A. S., Velts N. Yu., Zhuravleva E. O., Bukatina T. M., Alyautdin R. N., Merkulov V. A. Nanoscale therapeutic system: Safety assessment features // Safety and Risk of Pharmacotherapy. 2019. V. 7. N 3. P. 127–138. https://doi.org/10.30895/2312-7821-2019-7-3-127-138].
- Anselmo A. C., Mitragotri S. Nanoparticles in the clinic: An update // BioTM. 2019. V. 4. N 1. P. 1–16. https://doi.org/10.1002/btm2.10143
- Namiot E. D., Sokolov A. V., Chubarev V. N., Tarasov V. V., Schioth H. B. Nanoparticles in clinical trials: Analysis of clinical trials, FDA approvals and use for COVID-19 vaccines // Int. J. Mol. Sci. 2023. V. 24. N 1. ID 787. https://doi.org/10.3390/ijms24010787
- Wang H., Hu H., Yang H., Li Z. Hydroxyethyl starch based smart nanomedicine // RSC Advances. 2021. V. 11. P. 3226–3240. https://doi.org/10.1039/D0RA09663F
- Torres F. G., De-la-Torre G. E. Synthesis, characteristics, and applications of modified starch nanoparticles: A review // Int. J. Biol. Macromol. 2022. V. 194. P. 289–305. https://doi.org/10.1016/j.ijbiomac.2021.11.187
- Ahmed R., Gardouha B., Ahmed S. G., Srag El-D., Mostafa Y., Gada S. Formulation factors of starch-based nanosystems preparation and their pharmaceutical application // RPBS. 2021. V. 5. N 3. P. 28–39. https://doi.org/10.21608/rpbs.2020.51097.1080
- Qin Y., Liu C., Jiang S., Xiong L., Sun Q. Characterization of starch nanoparticles prepared by nanoprecipitation: Influence of amylose content and starch type // Ind. Crop. Prod. 2016. V. 87. P. 182–190. https://doi.org/10.1016/j.indcrop.2016.04.038
- Chandra K., Dutta S., Kolya H., Kang C. W. Structural aspect of hydroxyethyl-starch-anticancer-drug-conjugates as state-of-the-art drug carriers // Sci. Pharm. 2023. V. 91. N 3. ID 32. https://doi.org/10.3390/scipharm91030032
- Chong W. H., Chin S. F., Pang S. C., Kok K. Y. Synthesis and characterisation of piperine loaded starch nanoparticles // J. Phys. Sci. 2020. V. 31. N 1. P. 57–68. https://doi.org/10.21315/jps2020.31.1.4
- Chen Y., Hao Y., Ting K., Li Q., Gao Q. Preparation and emulsification properties of dialdehyde starch nanoparticles // Food Chem. 2019. V. 286. P. 467–74. https://doi.org/10.1016/j.foodchem.2019.01.188
- Иозеп А. А., Григорьев А. А., Лашкевич Н. В. Реакции декстранполиальдегида с гетероциклическими соединениями // ЖПХ. 1999. Т. 72. № 7. С. 1165–1168 [Iozep A.A., Suvorova O.B., Lebedko A.V., Passet B.V. Reactions of dextranpolyaldehyde with heterocyclic compounds // J. Appl. Chem. 1999. T. 72. N. 7. P. 1165–1168].
- Xiao S. Y., Liu X. M., Tong C. Y., Zhao L. C., Liu X. J., Zhou A. M., Cao Y. Dialdehyde starch nanoparticles as antitumor drug delivery system: An in vitro, in vivo and immunohistological evaluation // Chin. Sci. Bull. 2012. V. 57. N 24. P. 3226–3232. https://doi.org/10.1007/s11434-012-5342-5
- Bagheri S., Hassani S. M., Mahdizadeh S. J. Computational procedure for determining physicochemical properties of doxorubicin dialdehyde starch (DOX-DAS) and doxorubicin-dialdehyde starch nanoparticles (DOX-DASNP) // Int. J. Pharm. Pharm. Sci. 2012. V. 4. N 1. P. 640–642.
- Yu D. M., Xiao S. Y., Tong C. Y., Chen L., Liu X. M. Dialdehyde starch nanoparticles: Preparation and application in drug // Chin. Sci. Bull. 2007. V. 52. N 21. P. 2913–2918.
- Saari H., Fuentes C., Sjöö M., Rayner M., Wahlgren M. Production of starch nanoparticles by dissolution and non-solvent precipitation for use in food-grade Pickering emulsions // Carbohydr. Polym. 2017. V. 157. P. 558–566. https://doi.org/10.1016/j.carbpol.2016.10.003
- Bilati U., Allémann E., Doelker E. Development of a nanoprecipitation method intended for the entrapment of hydrophilic drugs into nanoparticles // Eur. J. Pharm. Sci. 2005. V. 24. N 1. P. 67–75. https://doi.org/10.1016/j.ejps.2004.09.011
- Wasiak I., Kulikowska A., Janczewska M., Michalak M., Cymerman I. A., Nagalski A., Kallinger P., Szymanski W. W., Ciach T. Dextran nanoparticle synthesis and properties // PLoS ONE. 2016. V. 11. N 1. ID e0146237. https://doi.org/10.1371/journal.pone.0146237
- Yu J., Chang P. R., Ma X. The preparation and properties of dialdehyde starch and thermoplastic dialdehyde starch // Carbohydr. Polym. 2010. V. 79. N 2. P. 296–300. https://doi.org/10.1016/j.carbpol.2009.08.005
- Maia J., Evangelista M. B., Gil H., Ferreira L. Dextran-based materials for biomedical applications // Carbohydrates Applications in Medicine / Ed. M. H. Gil. 2014. P. 31–53.
- Mo X., Iwata H., Matsuda S., Ikada Y. Soft tissue adhesive composed of modified gelatin and polysaccharides // J. Biomater. Sci. Polym. Ed. 2000. V. 11. N 4. P. 341–351. https://doi.org/10.1163/156856200743742
- Rodriguez-Loya J., Lerma M., Gardea-Torresdey J. L. Dynamic light scattering and its application to control nanoparticle aggregation in colloidal systems: A review // Micromachines (Basel). 2023. V. 15. N 1. ID 24. https://doi.org/10.3390/mi15010024
- Lee J., Park S., Roh H. G., Oh S., Kim S., Kim M., Kim D., Park J. Preparation and characterization of superabsorbent polymers based on starch aldehydes and carboxymethyl cellulose // Polymers. 2018. V. 10. N 6. ID 605. https://doi.org/10.3390/polym10060605
- Юркштович Т. Л., Голуб Н. В., Костерова Р. И., Пристромова Ю. И., Алиновская В. А. Наночастицы на основе альдегидсодержащих полисахаридов в качестве носителей биологически активных веществ // Свиридовские чтения. 2024. № 1. С. 140–142.
- Sana S., Boodhoo K., Zivkovic V. Production of starch nanoparticles through solvent-antisolvent precipitation in a spinning disc reactor // Green Process. Synth. 2019. V. 8. P. 507–515. https://doi.org/10.1515/gps-2019-0019
- Кузнецова Е. В., Кузнецов Н. М., Калинин К. Т., Лебедев-Степанов П. В., Новиков А. А., Чвалун С. Н. Роль комплексного подхода при определении размеров наночастиц в дисперсиях // Коллоид. журн. 2022. Т. 84. № 6. С. 740–751. https://doi.org/10.31857/S0023291222600389 [Kuznetsova E. V., Kuznetsov N. M., Kalinin K. T., Lebedev-Stepanov P. V., Novikov A. A., Chvalun S. N. The role of integrated approach in the determination of nanoparticle sizes in dispersions // Colloid J. 2022. V. 84. N 6. P. 704–714. https://doi.org/10.1134/S1061933X22600348].
- Monopoli M. P., Aberg C., Salvati A., Dawson K. A. Colloidal stability of polymeric nanoparticles in biological fluids // J. Nanopart. Res. 2012. V. 14. ID 920. https://doi.org/10.1007/s11051-012-0920-7
- Danaei M., Dehghankhold M., Ataei S., Hasanzadeh Davarani F., Javanmard R., Dokhani A., Khorasani S., Mozafari M. R. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems // Pharmaceutics. 2018. V. 10. N 2. 57. https://doi.org/10.3390/pharmaceutics10020057
- Hebeish A., El-Rafie M. H., El-Sheikh M. A., El-Naggar M. E. Ultra-fine characteristics of starch nanoparticles prepared using native starch with and without surfactant // J. Inorg. Organomet. Polym. Mater. 2014. V. 24. P. 515–524. https://doi.org/10.1007/s10904-013-0004-x
- Koniuch N., Ilett M., Collins S. M., Hondow N., Brown A., Hughes L., Blade H. Structure of polymeric nanoparticles encapsulating a drug — pamoic acid ion pair by scanning transmission electron microscopy // Heliyon. 2023. V. 9. N 6. ID 16959. https://doi.org/10.1016/j.heliyon.2023.e16959
Supplementary files
