[]
- Authors: Vasiliev V.P.1,2, Kravchenko O.V.1,2, Solovev M.V.1, Shilov G.V.1, Shikhovtsev A.V.1,2, Zaytsev A.A.1, Dobrovolsky Y.A.1,2
-
Affiliations:
- Federal Research Center for Problems of Chemical Physics and Medical Chemistry of RAS
- Hydrogen Energy Center (PAO AFK Sistema)
- Issue: Vol 98, No 5 (2025)
- Pages: 340-348
- Section: Водородные технологии
- URL: https://journal-vniispk.ru/0044-4618/article/view/308958
- DOI: https://doi.org/10.31857/S0044461825050068
- EDN: https://elibrary.ru/lvgmak
- ID: 308958
Cite item
Abstract
С целью создания материалов с высоким массовым содержанием водорода, пригодных для использования в системах электроснабжения мобильных устройств на основе топливных элементов, выполнен синтез и проведено исследование свойств хранения и генерации водорода для композита на основе диаммиакатов боргидридов магния и цинка. Синтез выполнен методом механохимической обработки смеси Mg(BH4)2(NH3)2/Zn(BH4)2(NH3)2 в мольном соотношении 1:1. Образцы были проанализированы с использованием современных методов анализа: РФА, ИК-спектроскопии, СТА и РФЭС. Проведено термическое разложение композита и обнаружено снижение температуры выделения водорода по сравнению с исходными диаммиакатами. Кроме того, результаты исследования показали, что механизм реакции термического разложения композитов отличается от механизмов термолиза исходных комплексов.
About the authors
V. P. Vasiliev
Federal Research Center for Problems of Chemical Physics and Medical Chemistry of RAS; Hydrogen Energy Center (PAO AFK Sistema)
Email: vvp@icp.ac.ru
O. V. Kravchenko
Federal Research Center for Problems of Chemical Physics and Medical Chemistry of RAS; Hydrogen Energy Center (PAO AFK Sistema)
Email: vvp@icp.ac.ru
M. V. Solovev
Federal Research Center for Problems of Chemical Physics and Medical Chemistry of RAS
Email: vvp@icp.ac.ru
G. V. Shilov
Federal Research Center for Problems of Chemical Physics and Medical Chemistry of RAS
Email: vvp@icp.ac.ru
A. V. Shikhovtsev
Federal Research Center for Problems of Chemical Physics and Medical Chemistry of RAS; Hydrogen Energy Center (PAO AFK Sistema)
Email: vvp@icp.ac.ru
A. A. Zaytsev
Federal Research Center for Problems of Chemical Physics and Medical Chemistry of RAS
Email: vvp@icp.ac.ru
Y. A. Dobrovolsky
Federal Research Center for Problems of Chemical Physics and Medical Chemistry of RAS; Hydrogen Energy Center (PAO AFK Sistema)
Author for correspondence.
Email: vvp@icp.ac.ru
References
- Huang Y., Cheng Y., Zhang J. A review of high density solid hydrogen storage materials by pyrolysis for promising mobile applications // Ind. Eng. Chem. Res. 2021. V. 60. P. 2737‒2771. https://doi.org/10.1021/acs.iecr.0c04387
- Züttel A., Wenger P., Rentsch S., Sudan P., Mauron Ph., Emmenegger Ch. LiBH4 a new hydrogen storage material // J. Power Sources. 2003. V. 118. P. 1–7. https://doi.org/10.1016/S0378-7753(03)00054-5
- Abdalla A. M., Hossain S., Nisfindy O. B., Azad A. T., Dawood M., Azad A. K. Hydrogen production, storage, transportation and key challenges with applications: A review // Energy Convers Manage. 2018. V. 165. P. 602‒627. doi.org/10.1016/j.enconman.2018.03.088
- Ouyang L., Chen K., Jiang J., Yang X.-S., Zhu M. Hydrogen storage in light-metal based systems: A review // J. Alloys Compd. 2020. V. 829. P. 154597. https://doi.org/10.1016/j.jallcom.2020.154597
- Staubitz A., Robertson A. P. M., Manners I. Ammonia-borane and related compounds as dihydrogen sources // Chem. Rev. 2010. V. 110. P. 4079–4124. https://doi.org/10.1021/cr100088b
- Hirscher M., Yartys V. A., Baricco M., von Colbe J. B., Blanchard D., Bowman R. C. Jr., Broom D. P., Buckley C. E., Chang F., Chen P., Cho Y. W., Crivello J.-C., Cuevas F., David W. I. F., de Jongh P. E., Denys R. V., Dornheim M., Felderhoff M., Filinchuk Y., Froudakis G. E., Zlotea C. J. Materials for hydrogen-based energy storage — past, recent progress and future outlook // J. Alloys Compd. 2020. V. 827. P. 153548. https://doi.org/10.1016/j.jallcom.2019.153548
- Архангельский И. В., Кравченко О. В., Цветков М. В., Добровольский Ю. А., Шиховцев А. В., Соловьев М. В., Зайцев А. А. Синтез и особенности термолиза дигидрата боргидрида натрия // ЖПХ. 2019. Т. 92. № 6. С. 703‒711. https://doi.org/10.1134/S0044461819060021 [Arkhangelʹsky I. V., Kravchenko O. V., Tsvetkov M. V., Dobrovolʹsky Yu. A., Shikhovtsev A. V., Solovev M. V., Zaitsev A. A. Synthesis of sodium borohydride dihydrate and specific features of its thermolysis // Russ. J. Appl. Chem. 2019. V. 92. N 6. P. 734–742. https://doi.org/10.1134/S1070427219060028].
- Wu R., Ren Z., Zhang X., Lu Y., Li H., Gao M., Pan H., Liu Y. Nanosheet-like lithium borohydride hydrate with 10 wt % hydrogen release at 70 °C as a chemical hydrogen storage candidate // J. Phys. Chem. Lett. 2019. V. 10. P. 1872–1877. https://doi.org/10.1021/acs.jpclett.9b00416
- Zhu Y., Shen S., Yang X.-S., Zeng L., Tsui G., Xu Z.-L., Zhou Q., Tang R., Chan K. C. Role of rare-earth alloys in lithium borohydride regeneration from hydrous lithium metaborate // ACS Sustain. Chem. Eng. 2023. V. 11. P. 8931–8938. https://doi.org/10.1021/acssuschemeng.3c01073
- Guo Y., Yu X., Sun W., Sun D., Yang W. The hydrogen-enriched Al–B–N system as an advanced solid hydrogen-storage candidate // Angew. Chem. Int. Ed. 2011. V. 50. P. 1087–1091. https://doi.org/10.1002/anie.201006188
- Chu H., Wu G., Xiong Z., Guo J., He T., Chen P. Structure and hydrogen storage properties of calcium borohydride diammoniate // Chem. Mater. 2010. V. 22. P. 6021–6028. https://doi.org/10.1021/cm1023234
- Vasiliev V. P., Kravchenko O. V., Soloviev M. V., Zyubin A. S., Zyubina T. S., Zaytsev A. A., Shikhovtsev A. V., Blinova L. N., Dobrovolsky Y. A. Synthesis, properties and thermal decomposition particularities of magnesium borohydride ammoniates // Int. J. Hydrogen Energy. 2022. V. 47. P. 35320–35328. https://doi.org/10.1016/j.ijhydene.2022.08.100
- Соловьев М. В., Васильев В. П., Шилов Г. В., Кравченко О. В., Зайцев А. А., Шиховцев А. В., Добровольский Ю. A., Булычев Б. М. Синтез, уточнение свойств и структур монокристаллических ди- и триаммиакатных комплексов боргидрида магния // Изв. АН. Сер. хим. 2024. Т. 73. № 4. С. 906‒916. https://doi.org/10.1007/s11172-024-4204-z [Solovev M. V., Vasiliev V. P., Shilov G. V., Kravchenko O. V., Zaytsev A. A., Shikhovtsev A. V., Dobrovolsky Y. A., Bulychev B. M. Synthesis of single-crystal di- and triammine complexes of magnesium borohydride. Refinement of structures and properties // Russ. Chem. Bull. 2024. V. 73. P. 906–916. https://doi.org/10.1007/s11172-024-4204-z].
- Зюбин А. С., Зюбина Т. С., Кравченко О. В., Соловьев М. В., Васильев В. П., Зайцев А. А., Шиховцев А. В., Добровольский Ю. А. Квантово-химическое моделирование отщепления молекулярного водорода от диаммиаката борогидрида магния // ЖНХ. 2024. T. 69. № 6. С. 853‒865. https://doi.org/10.31857/S0044457X24060071 [Zyubin A. S., Zyubina T. S., Kravchenko O. V., Solovev M. V., Vasiliev V. P., Zaytsev A. A., Shikhovtsev A. V., Dobrovolsky Y. A. Quantum–chemical simulation of molecular hydrogen abstraction from magnesium borohydride diammoniate // Russ. J. Inorg. Chem. 2024. V. 69. P. 867–878. https://doi.org/10.1134/S0036023624600874].
- Guo Y., Jiang Y., Xia G., Yu X. Ammine aluminium borohydrides: An appealing system releasing over 12 wt % pure H2 under moderate temperature // Chem. Commun. 2012. V. 48. P. 4408–4410. https://doi.org/10.1039/c2cc30751k
- Wang K., Zhang J.-G., Lang X.-Q. The mechanism of controllable dehydrogenation: CPMD study of M(BH4)x(NH3)y (M = Li, Mg) decomposition // Phys. Chem. Chem. Phys. 2016. V. 18. P. 7015–7018. https://doi.org/10.1039/C5CP06808H
- Johnson S. R., David W. I., Royse D. M. Sommariva M., Tang C. Y., Fabbiani F. P., Jones M. O., Edwards P. P. The monoammoniate of lithium borohydride, Li(NH3)BH4: An effective ammonia storage compound // Chem. Asian. J. 2009. V. 4. P. 849–854. https://doi.org/10.1002/asia.200900051
- Gu Q., Guo L., Gao Y., Tan Y. B., Tang Z., Wallwork K. S., Zhang F., Yu X. Structure and decomposition of zinc borohydride ammonia adduct: Towards a pure hydrogen release // Energy Env. Sci. 2012. V. 5. P. 7590–7600. https://doi.org/10.1039/C2EE02485C
- Soloveichik G., Her J.-H., Stephens P. W., Gao Y., Rijssenbeek J., Andrus M., Zhao J.-C. Ammine magnesium borohydride complex as a new material for hydrogen storage: Structure and properties of Mg(BH4)2·2NH3 // Inorg. Chem. 2008. V. 47. P. 4290–4298. https://doi.org/10.1021/ic7023633
- Wang K., Zhang J.-G., Jiao J.-S., Zhang T., Zhou Z.-N. A first-principles study: Structure and decomposition of mono-/bimetallic ammine borohydrides // J. Phys. Chem. C. 2014. V. 118. P. 8271–8279. https://doi.org/10.1021/jp5012439
- Chen X., Yuan F., Tan Y., Tang Z., Yu X. Improved dehydrogenation properties of Ca(BH4)2·nNH3 (n = 1, 2, and 4) combined with Mg(BH4)2 // J. Phys. Chem. C. 2012. V. 116. P. 21162–21168. https://doi.org/10.1021/jp302866w
- Guo Y., Wu H., Zhou W., Yu X. Dehydrogenation tuning of ammine borohydrides using double-metal cations // J. Am. Chem. Soc. 2011. V. 133. P. 4690–4693. https://doi.org/10.1021/ja1105893
- Wang M., Ouyang L., Peng C., Zhu X., Zhu W., Shao H., Zhu M. Synthesis and hydrolysis of NaZn(BH4)3 and its ammoniates // J. Mater. Chem. A. 2017. V. 5. P. 17012–17020. https://doi.org/10.1039/C7TA05082H
- Wu D., Ouyang L., Liu J., Wang H., Shao H., Zhu M. Hydrogen generation properties and hydrolysis mechanism of Zr(BH4)4·8NH3 // J. Mater. Chem. A. 2017. V. 5. P. 16630–16635. https://doi.org/10.1039/C7TA04308B
- Gradisek A., Jepsen L. H., Jensen T. R., Conradi M. S. Nuclear magnetic resonance study of molecular dynamics in ammine metal borohydride Sr(BH4)2(NH3)2 // J. Phys. Chem. C. 2016. V. 120. P. 24646–24654. https://doi.org/10.1021/acs.jpcc.6b08162
- Emdadi A., Demir S., Kislak Y., Tekin A. Computational screening of dual-cation metal ammine borohydrides by density functional theory // J. Phys. Chem. C. 2016. V. 120. P. 13340–13350. https://doi.org/10.1021/acs.jpcc.6b01833
- Huang J., Tan Y., Su J., Gu Q., Černy R., Ouyang L., Sun D., Yu X., Zhu M. Synthesis, structure and dehydrogenation of zirconium borohydride octaammoniate // Chem. Commun. 2015. V. 51. P. 2794–2797. https://doi.org/doi.org/10.1039/C4CC09317H
- Huang J., Ouyang L., Gu Q., Yu X., Zhu M. Metal-borohydride-modified Zr(BH4)4·8NH3: Low-temperature dehydrogenation yielding highly pure hydrogen // Chem. Eur. J. 2015. N 21. P. 14931–14936. https://doi.org/10.1002/chem.201501461
- Zhao S., Xu B., Sun N., Sun Z., Zeng Y., Meng L. Improvement in dehydrogenation performance of Mg(BH4)2·2NH3 doped with transition metal: First-principles investigation // Int. J. Hydr. Energy. 2015. V. 40. P. 8721–8731. https://doi.org/10.1016/j.ijhydene.2015.05.023
- Кравченко О. В., Кравченко С. Е., Семененко С. Е. Аммиакаты боргидридов металлов // Журн. общ. химии. 1990. Т. 60. С. 2641–2660.
- Hoffmann R. Extended Hückel theory. III. Compounds of boron and nitrogen // J. Chem. Phys. 1964. V. 40. P. 2474‒2480. https://doi.org/10.1063/1.1725550
- Morrison C. A., Siddick M. M. Dihydrogen bonds in solid BH3NH3 // Angew. Chem. Int. Ed. 2004. V. 43. P. 4780–4782. https://doi.org/10.1002/anie.200460096
- Ravnsbæk D., Filinchuk Y., Cerenius Y., Jakobsen H. J., Besenbacher F., Skibsted J., Jensen T. R. A series of mixed-metal borohydrides // Angew. Chem. Int. Ed. 2009. V. 48. P. 6659–6663. https://doi.org/10.1002/anie.200903030
- Nickels E. A., Jones M. O., David W. I. F., Johnson S. R., Lowton R. L., Sommariva M., Edwards P. P. Tuning the decomposition temperature in complex hydrides: Synthesis of a mixed alkali metal borohydride // Angew. Chem. Int. Ed. 2008. V. 47. P. 2817–2819. https://doi.org/10.1002/anie.200704949
- Lindemann I., Ferrer R. D., Dunsch L., Filinchuk Y., Cěrný R., Hagemann H., DʹAnna V., Daku L. M. L., Schultz L., Gutfleisch O. Tuning the decomposition temperature in complex hydrides: Synthesis of a mixed alkali metal borohydride // Chem. Eur. J. 2010. V. 16. P. 8707–8712. https://doi.org/10.1002/chem.201000831
- Fang Z. Z., Kang X. D., Wang P., Li H. W., Orimo S. I. Unexpected dehydrogenation behavior of LiBH4/Mg(BH4)2 mixture associated with the in situ formation of dual-cation borohydride // J. Alloys Compd. 2010. V. 491. P. L1–L4. https://doi.org/10.1016/j.jallcom.2009.10.149
- Cěrný R., Severa G., Ravnsbæk D. B., Filinchuk Y., DʹAnna V., Hagemann H., Haase D., Jensen C. M., Jensen T. R. NaSc(BH4)4: A novel scandium-based borohydride // J. Phys. Chem. C. 2010. V. 114. P. 1357–1364. https://doi.org/10.1021/jp908397w
- Hagemann H., Longhini M., Kaminski J. W., Wesolowski T. A., Cěrný R., Penin N., Sørby M. H., Hauback B. C., Severa G., Jensen C. M. LiSc(BH4)4: A novel salt of Li+ and discrete Sc(BH4)4‒ complex anions // J. Phys. Chem. C. 2008. V. 112. P. 7551–7555. https://doi.org/10.1021/jp803201q
- Aidhy D. S., Wolverton C. First-principles prediction of phase stability and crystal structures in Li-Zn and Na-Zn mixed-metal borohydrides // Phys. Rev. B. 2011. V. 83. P. 144111. https://doi.org/10.1103/PhysRevB.83.144111
- Černy R., Kim K. C., Penin N., DʹAnna V., Hagemann H., Sholl D. S. AZn2(BH4)5 (A = Li, Na) and NaZn(BH4)3: Structural studies // J. Phys. Chem. C. 2010. V. 114. P. 19127–19133. https://doi.org/10.1021/jp105957r
- Ravnsbæk D. B., Frommen C., Reed D., Filinchuk Y., Sorby M., Hauback B. C., Jakobsen H. J., Book D., Besenbacher F., Skibsted J., Jensen T. R. Structural studies of lithium zinc borohydride by neutron powder diffraction, Raman and NMR spectroscopy // J. Alloys Compd. 2011. V. 509. P. S698–S704. https://doi.org/10.1016/j.jallcom.2010.11.008
- Fang Z. Z., Kang X. D., Luo J. H., Wang P., Li H. W., Orimo S. Formation and hydrogen storage properties of dual-cation (Li, Ca) borohydride // J. Phys. Chem. C. 2010. V. 114. P. 22736–22741. https://doi.org/10.1021/jp109260g
- Pat. 1,070,148. BRD (publ. 1959). Die Darstellung von Zn(NH3)4(BH4)2 und Cd(NH3)6(BH4)2.
- Мякишев К. Г., Горбачева И. И., Потапова О. Г., Волков В. В. О взаимодействии хлорида цинка с тетрагидроборатами щелочных металлов // Изв. СО АН СССР. 1989. Вып. 4. C. 50–55.
- Степин Б. Д. Техника лабораторного эксперимента в химии / Учеб. пособие для вузов. М.: Химия, 1999. 600 c. ISBN 5-7245-0955-5
- Vasiliev V. P., Solovev M. V., Kravchenko O. V., Zyubin A. S., Zyubina T. S., Shikhovtsev A. V., Zaytsev A. A., Dobrovolsky Y. A. Magnesium borohydride monoammine as hydrogen storage: Structure and pathway analysis for the thermal decomposition reaction // J. Alloys Compd. 2024. V. 1008. P. 176732. https://doi.org/10.1016/j.jallcom.2024.176738
- Li J. S., Zhang C. R., Li B., Cao F., Wang S. Q. Boron nitride coatings by chemical vapor deposition from borazine // Surf. Coat. Technol. 2011. V. 205. P. 3736–3741. https://doi.org/10.1016/j.surfcoat.2011.01.032
- Li Y., Liu Y., Zhang X., Zhou D., Lu Y., Gao M., Pan H. An ultrasound-assisted wet-chemistry approach towards uniform Mg(BH4)2·6NH3 nanoparticles with improved dehydrogenation properties // J. Mater. Chem. A. 2016. V. 54. P. 8366–8373. https://doi.org/10.1039/C6TA02944B.
- Santoni A., Vetrella U., Celentano G., Gambardella U., Mancini A. X-ray photoemission study of MgB2 films synthesized from in-situ annealed MgB2/Mg multilayers // Appl. Phys. A. 2007. V. 86. P. 485–490. https://doi.org/10.1007/s00339-006-3790-y
- Höche D., Blawert C., Cavellier M., Busardo D., Gloriant T. Magnesium nitride phase formation by means of ion beam implantation technique // Appl. Surf. Sci. 2011. V. 257. P. 5626–5633. https://doi.org/10.1016/j.apsusc.2011.01.061
- Qu J., Li Q., Luo C., Cheng J., Hou X. Characterization of flake boron nitride prepared from the low temperature combustion synthesized precursor and its application for dye adsorption // Coatings. 2018. V. 8. P. 214. https://doi.org/10.3390/coatings8060214
- Solís R. R., Quintana M. A., Blázquez G., Calero M., Muñoz-Batista M. J. Ruthenium deposited onto graphitic carbon modified with boron for the intensified photocatalytic production of benzaldehyde // Catal. Today. 2023. V. 423. P. 114266. https://doi.org/10.1016/j.cattod.2023.114266
- Zhang B., Wu Q., Yu H., Bulin C., Sun H., Li R. Ge X., Xing R. High-efficient liquid exfoliation of boron nitride nanosheets using aqueous solution of alkanolamine // Nanoscale Res. Lett. 2017. V. 12. P. 596. https://doi.org/10.1186/s11671-017-2366-4
- Liang H., Jia L., Ji S., Ma S., Linkov V., Chen F. Mesoporous N-doped carbon with atomically dispersed Zn-Nx active sites as high-performance cathode in lithium-oxygen batteries // Ionics. 2021. V. 27. P. 4695–4704. https://doi.org/10.1007/s11581-021-04217-4
- Lin J.-H., Huang Y.-J., Su Y.-P., Liu C.-A., Devan R. S., Ho C.-H., Wang Y.-P., Lee H.-W., Chang C.-M., Liou Y., Ma Y.-R. Room-temperature wide-range photoluminescence and semiconducting characteristics of two-dimensional pure metallic Zn nanoplates // RSC Advances. 2012. V. 2. P. 2123–2127. https://doi.org/10.1039/C2RA00972B
- Li F., Ding X.-B., Cao Q.-C., Qin Y.-H., Wang C. A ZIF-derived hierarchically porous Fe–Zn–N–C catalyst synthesized via a two-stage pyrolysis for the highly efficient oxygen reduction reaction in both acidic and alkaline media // Chem. Commun. 2019. V. 55. P. 13979‒13982. https://doi.org/10.1039/C9CC07489A
- Sobola D., Kaspar P., Částková K., Dallaev R., Papež N., Sedlák P., Trčka T., Orudzhev F., Kaštyl J., Weiser A., Knápek A., Holcman V. PVDF fibers modification by nitrate salts doping // Polymers. 2021. V. 13. P. 2439. https://doi.org/10.3390/polym13152439
Supplementary files
