[]
- Autores: Matveev D.N.1, Anokhina T.S.1, Antonov S.V.1, Bezrukov N.P.1, Mandryk M.A.1, Sadkovskiy I.A.1, Borisov I.L.1, Kutuzov K.A.1, Vasilievskiy V.P.1, Volkov A.V.1, Usachev V.B.2, Bazhenov S.D.1
-
Afiliações:
- Institute of Petrochemical Synthesis named after A. V. Topchiev of the Russian Academy of Sciences
- JSC «Research Institute NPO «Luch»
- Edição: Volume 98, Nº 6 (2025)
- Páginas: 350-368
- Seção: Articles
- URL: https://journal-vniispk.ru/0044-4618/article/view/320184
- DOI: https://doi.org/10.31857/S0044461825060019
- ID: 320184
Citar
Resumo
Sobre autores
D. Matveev
Institute of Petrochemical Synthesis named after A. V. Topchiev of the Russian Academy of Sciences
Email: dmatveev@ips.ac.ru
119991, GSP-1, Moscow, Leninsky Ave., 29
T. Anokhina
Institute of Petrochemical Synthesis named after A. V. Topchiev of the Russian Academy of Sciences
Email: dmatveev@ips.ac.ru
119991, GSP-1, Moscow, Leninsky Ave., 29
S. Antonov
Institute of Petrochemical Synthesis named after A. V. Topchiev of the Russian Academy of Sciences
Email: dmatveev@ips.ac.ru
119991, GSP-1, Moscow, Leninsky Ave., 29
N. Bezrukov
Institute of Petrochemical Synthesis named after A. V. Topchiev of the Russian Academy of Sciences
Email: dmatveev@ips.ac.ru
119991, GSP-1, Moscow, Leninsky Ave., 29
M. Mandryk
Institute of Petrochemical Synthesis named after A. V. Topchiev of the Russian Academy of Sciences
Email: dmatveev@ips.ac.ru
119991, GSP-1, Moscow, Leninsky Ave., 29
I. Sadkovskiy
Institute of Petrochemical Synthesis named after A. V. Topchiev of the Russian Academy of Sciences
Email: dmatveev@ips.ac.ru
119991, GSP-1, Moscow, Leninsky Ave., 29
I. Borisov
Institute of Petrochemical Synthesis named after A. V. Topchiev of the Russian Academy of Sciences
Email: dmatveev@ips.ac.ru
119991, GSP-1, Moscow, Leninsky Ave., 29
K. Kutuzov
Institute of Petrochemical Synthesis named after A. V. Topchiev of the Russian Academy of Sciences
Email: dmatveev@ips.ac.ru
119991, GSP-1, Moscow, Leninsky Ave., 29
V. Vasilievskiy
Institute of Petrochemical Synthesis named after A. V. Topchiev of the Russian Academy of Sciences
Email: dmatveev@ips.ac.ru
119991, GSP-1, Moscow, Leninsky Ave., 29
A. Volkov
Institute of Petrochemical Synthesis named after A. V. Topchiev of the Russian Academy of Sciences
Email: dmatveev@ips.ac.ru
119991, GSP-1, Moscow, Leninsky Ave., 29
V. Usachev
JSC «Research Institute NPO «Luch»
Email: dmatveev@ips.ac.ru
142103, Moscow Region, Podolsk, Railway St., 24
S. Bazhenov
Institute of Petrochemical Synthesis named after A. V. Topchiev of the Russian Academy of Sciences
Email: dmatveev@ips.ac.ru
119991, GSP-1, Moscow, Leninsky Ave., 29
Bibliografia
- [1] Hydrogen Council. McKinsey & Company. Hydrogen Insights 2024. 2024. URL: https://hydrogencouncil.com/en/hydrogen-insights-2024/ (дата обращения: 29.06.2025).
- [2] Стенина И. А., Ярославцев А. Б. Перспективы развития водородной энергетики. Полимерные мембраны для топливных элементов и электролизеров // Мембраны и мембран. технологии. 2024. Т. 14. № 1. С. 19–32.
- https://doi.org/10.31857/S2218117224010039
- [3] Ярославцев А. Б. Развитие электрохимических технологий водородной энергетики // 11-я Всерос. конф. «Топливные элементы и энергоустановки на их основе». 2024. № 11. C. 35–38.
- https://doi.org/10.24412/cl-37211-FC-2024.12
- [4] Филиппов С. П., Ярославцев А. Б. Водородная энергетика: перспективы развития и материалы // Успехи химии. 2021. Т. 90. № 6. С. 627–643.
- https://doi.org/10.1070/RCR5014
- [Filippov S. P., Yaroslavtsev A. B. Hydrogen energy: Development prospects and materials // Russ. Chem. Rev. 2021. V. 90. N 6. P. 627.
- https://doi.org/10.1070/RCR5014].
- [5] Amin M., Butt A. S., Ahmad J., Lee C., Azam S. U., Mannan H. A., Naveed A. B., Farooqi Z. U. R., Chung E., Iqbal A. Issues and challenges in hydrogen separation technologies // Energy Reports. 2023. V. 9. P. 894-911. https://doi.org/10.1016/j.egyr.2022.12.014
- [6] Amin M., Shah H. H., Fareed A. G., Khan W. U., Chung E., Zia A., Rahman Farooqi Z. U., Lee C. Hydrogen production through renewable and non-renewable energy processes and their impact on climate change // Int. J. Hydrogen Energy. 2022. V. 47. N 77. P. 33112–33134.
- https://doi.org/10.1016/j.ijhydene.2022.07.172
- [7] Lider A., Kudiiarov V., Kurdyumov N., Lyu J., Koptsev M., Travitzky N., Hotza D. Materials and techniques for hydrogen separation from methane-containing gas mixtures // Int. J. Hydrogen Energy. 2023. V. 48. N 73. P. 28390–28411.
- https://doi.org/10.1016/j.ijhydene.2023.03.345
- [8] Singla S., Shetti N. P., Basu S., Mondal K., Aminabhavi T. M. Hydrogen production technologies — Membrane based separation, storage and challenges // J. Environ. Manage. 2022. V. 302. P. 113963.
- https://doi.org/10.1016/j.jenvman.2021.113963
- [9] Ponomarev I. I., Volkova Y. A., Ponomarev I. I., Razorenov D. Y., Skupov K. M., Nikiforov R. Y., Chirkov S. V., Ryzhikh V. E., Belov N. A., Alentiev A. Y. Polynaphthoylenebenzimidazoles for gas separation — Unexpected PIM relatives // Polymer. 2022. V. 238. P. 124396.
- https://doi.org/10.1016/j.polymer.2021.124396
- [10] Hao A., Wan X., Liu X., Yu R., Shui J. Inorganic microporous membranes for hydrogen separation: Challenges and solutions // Nano Res. Energy. 2022. V. 1. N 2. P. e9120013-e9120013.
- https://doi.org/10.26599/NRE.2022.9120013
- [11] Huang L., Xing Z., Zhuang X., Wei J., Ma Y., Wang B., Jiang X., He X., Deng L., Dai Z. Polymeric membranes and their derivatives for H2/CH4 separation: State of the art // Sep. Purif. Technol. 2022. V. 297. P. 121504. https://doi.org/10.1016/j.seppur.2022.121504
- [12] Stenina I., Yaroslavtsev A. Modern technologies of hydrogen production // Processes. 2022. V. 11. N 1. P. 56. https://doi.org/10.3390/pr11010056
- [13] Алентьев А. Ю., Волков А. В., Воротынцев И. В., Максимов А. Л., Ярославцев А. Б. Мембранные технологии для декарбонизации // Мембраны и мембран. технологии. 2021. Т. 11. № 5. С. 283–303. https://doi.org/10.1134/S2218117221050023
- [14] Алентьев А. Ю., Рыжих В. Е., Сырцова Д. А., Белов Н. А. Полимерные материалы для решения актуальных задач мембранного газоразделения // Успехи химии. 2023. Т. 92. № 6. С. RCR5083.
- https://doi.org/10.59761/RCR5083
- [15] Lanjekar P. R., Panwar N. L. Hydrogen gas separation through membrane technology and sustainability analysis of membrane: A review // Emergent Mater. 2023. V. 6. N 6. P. 1727–1750.
- https://doi.org/10.1007/s42247-023-00561-5
- [16] Eikeng E., Makhsoos A., Pollet B. G. Critical and strategic raw materials for electrolysers, fuel cells, metal hydrides and hydrogen separation technologies // Int. J. Hydrogen Energy. 2024. V. 71. P. 433–464. https://doi.org/10.1016/j.ijhydene.2024.05.096
- [17] Zhu X., Li S., Shi Y., Cai N. Recent advances in elevated-temperature pressure swing adsorption for carbon capture and hydrogen production // Prog. Energy Combust. Sci. 2019. V. 75. P. 100784.
- https://doi.org/10.1016/j.pecs.2019.100784
- [18] Aasadnia M., Mehrpooya M., Ghorbani B. A novel integrated structure for hydrogen purification using the cryogenic method // J. Clean. Prod. 2021. V. 278. P. 123872.
- https://doi.org/10.1016/j.jclepro.2020.123872
- [19] Апель П. Ю., Бобрешова О. В., Волков А. В., Волков В. В., Никоненко В. В., Стенина И. А., Филиппов А. Н., Ямпольский Ю. П., Ярославцев А. Б. Перспективы развития мембранной науки // Мембраны и мембран. технологии. 2019. Т. 9. № 2. С. 59–80.
- https://doi.org/10.1134/S2218117219020020
- [20] Апель П. Ю., Велизаров С., Волков А. В., Елисеева Т. В., Никоненко В. В., Паршина А. В., Письменская Н. Д., Попов К. И., Ярославцев А. Б. Фаулинг и деградация мембран в мембранных процессах // Мембраны и мембран. технологии. 2022. Т. 12. № 2. С. 81–106.
- https://doi.org/10.1134/S2218117222020031
- [21] Xiao Y., Low B. T., Hosseini S. S., Chung T. S., Paul D. R. The strategies of molecular architecture and modification of polyimide-based membranes for CO2 removal from natural gas — A review // Prog. Polym. Sci. 2009. V. 34. N 6. P. 561–580.
- https://doi.org/10.1016/j.progpolymsci.2008.12.004
- [22] Ismail A. F., Rana D., Matsuura T., Foley H. C. Carbon-based membranes for separation processes.Springer Science & Business Media, 2011. 334 p.
- [23] Sidhikku Kandath Valappil R., Ghasem N., Al-Marzouqi M. Current and future trends in polymer membrane-based gas separation technology: A comprehensive review // J. Ind. Eng. Chem. 2021. V. 98. P. 103–129.
- https://doi.org/10.1016/j.jiec.2021.03.030
- [24] Pat. US 3228876A (publ. 11.01.1966). Permeability separatory apparatus, permeability separatory membrane element, method of making the same and process utilizing the same.
- [25] Peng N., Widjojo N., Sukitpaneenit P., Teoh M. M., Lipscomb G. G., Chung T.-S., Lai J.-Y. Evolution of polymeric hollow fibers as sustainable technologies: Past, present, and future // Prog. Polym. Sci. 2012. V. 37. N 10. P. 1401–1424.
- https://doi.org/10.1016/j.progpolymsci.2012.01.001
- [26] Peters Th. Membrane technology for water treatment // Chem. Eng. Technol. 2010. V. 33. N 8. P. 1233–1240. https://doi.org/10.1002/ceat.201000139
- [27] Matveev D. N., Anokhina T. S., Volkov V. V., Borisov I. L., Volkov A. V. Fabrication of hollow fiber membranes: Effect of process parameters // Membr. Membr. Technol. 2023. V. 5. N Suppl 1. P. S1–S21. https://doi.org/10.1134/S2517751623070016
- [28] Баженов С. Д., Алентьев А. Ю., Шалыгин М. Г., Борисов И. Л., Анохина Т. С. Мембранное газоразделение: современное состояние и перспективы // Науч. журн. рос. газ. об-ва. 2024. Т. 1. № 43. С. 108–121.
- [29] Pat. WO 2017087180A1 (publ. 26.05.2017). High selectivity copolyimide membranes for separations.
- [30] Пат. RU 2686331C2 (опубл. 25.04.2019). Полиимидные мембраны с высокой проницаемостью: повышение селективности к газам посредством уф-обработки.
- [31] Пат. RU 2556666C2 (опубл. 10.07.2015). Полиимидные газоразделительные мембраны.
- [32] Pat. WO 2015094675A1 (publ. 25.06.2015). Aromatic poly(ether sulfone imide) membranes for gas separations.
- [33] Pat. EA 038148B1 (publ. 13.07.2021). Gas separation membranes based on fluorinated and perfluorinated polymers.
- [34] Pat. WO 2017069795A1 (publ. 27.04.2017). Gas separation membranes based on fluorinated and perfluorinated polymers.
- [35] Pat. US20120067211A1 (publ. 22.03.2012). Porous hollow fiber supported dense membrane for hydrogen production, separation, or purification.
- [36] Pat. JP 2013066849A (publ. 18.04.2013). Gas separation membrane module.
- [37] Pat. JP 2017177071A (publ. 05.10.2017). Separation membrane module and hollow fiber membrane element.
- [38] Pat. JP 2014014820A (publ. 30.01.2014). Shell feed type gas separation membrane module.
- [39] Pat. WO 2000025897A1 (publ. 11.05.2000). Bore-side feed modules with permeate flow channels.
- [40] Pat. JP 2004330017A (publ. 25.11.2004). Hollow fiber separation membrane module.
- [41] Пат. RU 171611U1 (опубл. 07.06.2017). Газоразделительный мембранный модуль.
- [42] Пат. RU 2671888C2 (опубл. 07.11.2018). Половолоконный газоразделительный модуль и способ его изготовления.
- [43] Pat. US 20160236151A1 (publ. 18.08.2016). High temperature resistant epoxy resins for producing hollow fiber membrane modules for high temperature gas separation applications.
- [44] Pat. US 20030159583A1 (publ. 28.08.2003). High temperature membrane module tubesheet composed of thermoset resin blends.
- [45] Pat. WO 2017116121A1 (publ. 06.07.2017). Hollow fiber membrane and hollow fiber membrane module comprising same.
- [46] Pat. EP 2883592A1 (publ. 17.06.2015). Gas-separating membrane module.
- [47] Pat. JP 2014046224A (publ. 17.03.2014). Gas separation membrane module.
- [48] Pat. JP 2014036932A (publ. 27.02.2014). Gas separation membrane module and method for replacing hollow fiber element.
- [49] Пат. RU 2747951C2 (опубл. 17.05.2021). Мембранный модуль разделения газов и способ замены элемента из полых волокон.
- [50] Pat. JP 2013010098A (publ. 17.01.2013). Gas separation membrane module.
- [51] Пат. RU 120372U1 (опубл. 20.09.2012). Мембранный газоразделительный блок.
- [52] Пат. RU 181318U1 (опубл. 10.07.2018). Мембранный газоразделительный модуль.
- [53] Пат. RU 169226U1 (опубл. 13.03.2017). Устройство для мембранного разделения газовых смесей.
- [54] Пат. RU 2595699C1 (опубл. 27.08.2016). Мембранный газоразделительный модуль.
- [55] Pat. CN 110327787A (publ. 15.10.2019). A kind of enhancement type hollow fiber film, preparation method and device.
- [56] Pat. CN 213132683U (publ. 07.05.2021). High-efficient PVDF hollow fiber membrane preparation facilities.
- [57] Pat. CN 105268332A (publ. 27.01.2016). Industrialization preparation device of intelligent separating membrane.
- [58] Pat. CN 110465207A (publ. 19.11.2019). The preparation facilities and its method of a kind of Novel hollow fiber gas separation membrane and application.
- [59] Pat. EP 0750937A2 (publ. 02.01.1997). Method and apparatus for spinning hollow fiber membranes.
- [60] Pat. CN 114042382A (publ. 15.02.2022). Preparation facilities of hollow fiber membrane and flat membrane.
- [61] Pat. CN 217449672U (publ. 20.09.2022). Preparation facilities of hollow fiber membrane and flat membrane.
- [62] Pat. US 20220088543A1 (publ. 24.03.2022). System and method for producing hollow fibre membranes.
- [63] Pat. CN 207576150U (publ. 06.07.2018). Porous hollow fiber membrane spinning appts.
- [64] Pat. CN 210934506U (publ. 07.07.2020). Enhancement mode hollow fiber membrane, spinning jet and preparation facilities thereof.
- [65] Pat. US 20130104416A1 (publ. 02.05.2013). Drying device and drying method for hollow fiber membranes.
- [66] Pat. JP 3288400B2 (publ. 04.06.2002). Method and apparatus for drying end of hollow fiber bundle.
- [67] Pat. JP 2008207050A (publ. 11.09.2008). Manufacturing method of hollow fiber membrane.
- [68] Pat. US 11154820B2 (publ. 26.10.2021). On-line drying of hollow fiber membranes.
- [69] Pat. US 20140047728A1 (publ. 20.02.2014). Drying device for hollow fiber membrane.
- [70] Pat. JP S6078604A (publ. 16.04.1984). Method and apparatus for drying dialytic hollow fiber.
- [71] Pat. US 4263053A (publ. 21.04.1981). Method for cleaning and drying hollow fibers.
- [72] Pat. US 3422008A (publ. 14.01.1969). Wound hollow fiber permeability apparatus and process of making the same.
- [73] Pat. US 3339341A (publ. 05.09.1967). Fluid separation process and apparatus.
- [74] Pat. US 3492698A (publ. 03.02.1970). Centrifugal casting apparatus for forming a cast wall member extending transversely across an elongated bundle of substantially parallel hollow filaments of a fluid permeation separation apparatus.
- [75] Wan C. F., Yang T., Lipscomb G. G., Stookey D. J., Chung T.-S. Design and fabrication of hollow fiber membrane modules // Hollow Fiber Membranes / Eds T.-S. Chung, Y. Feng. Elsevier, 2021. P. 225–252.
- [76] Pat. US 3455460A (publ. 15.07.1969). Permeability separatory apparatus and processes of making and using the same.
- [77] Pat. US 4045851A (publ. 06.09.1977). Method of fabrication of hollow filament separatory module.
- [78] Pat. US 4207192A (publ. 10.06.1980). Hollow filament separatory module and method of fabrication.
- [79] Pat. US 4631128A (publ. 23.12.1986). Permselective hollow fiber bundle.
- [80] Pat. US 4351092A (publ. 28.09.1982). Method of fabrication of coreless hollow filament separatory module.
- [81] Pat. US 4824566A (publ. 25.04.1989). Assembly comprising a foraminous core, resinous tubesheet and self-locking, helically wound, hollow fiber bundle.
- [82] Pat. US 7998254B2 (publ. 16.08.2011). Membrane module.
- [83] Pat. US 3391041A (publ. 02.07.1968). Process of making a plastic tube bundle for heat exchange.
- [84] Pat. US 5695702A (publ. 09.12.1997). Thermoplastic hollow fiber membrane module and method of manufacture.
- [85] Pat. US 4666543A (publ. 19.05.1987). Hollow fiber device for removing waste material in the blood and a process of manufacture thereof.
- [86] Pat. US 5885454A (publ. 23.03.1999). Separation module and bundle unit of hollow thread-type porous membrane elements and methods of producing same.
- [87] Pat. US 3536611A (publ. 27.10.1970). Membrane device and method.
- [88] Wickramasinghe S. R., Semmens M. J., Cussler E. L. Hollow fiber modules made with hollow fiber fabric // J. Membr. Sci. 1993. V. 84. N 1. P. 1–14.
- https://doi.org/10.1016/0376-7388(93)85046-Y
- [89] Pat. KR 20100130281A (publ. 13.12.2010). Machine for manufacturing hollow fiber membrane module.
- [90] Pat. CN 103239997A (publ. 14.08.2013). Method for manufacturing hollow fiber membrane module and manufacturing device.
- [91] Pat. CN 109109035A (publ. 01.01.2019). A kind of hollow fiber ultrafiltration membrane processing unit (plant).
- [92] Pat. WO 2014081130A1 (publ. 30.05.2014). Apparatus for manufacturing hollow fiber membrane module and method for manufacuring hollow fiber membrane module using the same.
- [93] Пат. RU 2706302C1 (опубл. 15.11.2019). Способ изготовления половолоконного модуля.
- [94] Skog T. G., Johansen S., Hägg M. B. Method to prepare lab-sized hollow fiber modules for gas separation testing // Ind. Eng. Chem. Res. 2014. V. 53. N 23. P. 9841–9848. https://doi.org/10.1021/ie4041059
- [95] Yan M., Bai Q., Xu Y., Ma S., Bo C., Ou J. Overview of hemodialysis membranes: Methods and strategies to improve hemocompatibility // J. Indust. Eng. Chem. 2024. V. 139. P. 94–110.
- https://doi.org/10.1016/j.jiec.2024.05.035
- [96] Pat. US 10583664B2 (publ.10.03.2020). Hollow fiber membrane module.
- [97] Pat. US 10850237B2 (publ. 01.12.2020). Method for producing a membrane filter.
- [98] Пат. RU 2707515C2 (опубл. 27.11.2019). Новые картриджи и модули для разделения текучих сред.
- [99] Пат. RU 2648027C1 (опубл. 21.03.2018). Устройство для очистки крови на основе мембран в виде полых волокон.
- [100] Pat. US 10993386B1 (publ. 04.05.2021). System and method for commercially growing mushrooms.
- [101] Pat. US 3962094A (publ. 08.06.1976). Hollow fiber separatory device.
- [102] Pat. US 10758658B2 (publ. 01.09.2020). Artificial lung and method for manufacturing artificial lung.
- [103] Scholes C. A., Smith K. H., Kentish S. E., Stevens G. W. CO2 capture from pre-combustion processes — Strategies for membrane gas separation // Int. J. Greenh. Gas. Con. 2010. V. 4. N 5. P. 739–755.
- https://doi.org/10.1016/j.ijggc.2010.04.001
- [104] Pat. US 11045747B2 (publ. 29.06.2021). Hollow fiber membrane module, degassing and gas supplying device, inkjet printer, and device for manufacturing carbonated spring.
- [105] Pat. US 7279215B2 (publ.09.10.2007). Membrane modules and integrated membrane cassettes.
- [106] Pat. US 10981117B2 (publ. 20.04.2021). Blended potting resins and use thereof.
- [107] Pat. US 10926225B2 (publ. 23.02.2021). Hollow fiber cartridges and components and methods of their construction.
- [108] Chen Y., Loh C. H., Zhang L., Setiawan L., She Q., Fang W., Hu X., Wang R. Module scale-up and performance evaluation of thin film composite hollow fiber membranes for pressure retarded osmosis // J. Membr. Sci. 2018. V. 548. P. 398–407. https://doi.org/10.1016/j.memsci.2017.11.036
- [109] Pat. US 6270714B1 (publ. 07.08.2001). Method for potting or casting inorganic hollow fiber membranes into tube sheets.
- [110] Pat. US 7662333B2 (publ. 16.02.2010). Vacuum-assisted potting of fiber module tubesheets.
- [111] Pat. US 5840230A (publ. 24.11.1998). Process for preparing hollow fibre sections for hollow fibre modules and said hollow fibre section for a hollow fibre module.
- [112] Pat. US 7931805B2 (publ. 26.04.2011). Membrane filter unit and method for the production of the membrane filter unit.
- [113] Pat. US 5639373A (publ. 17.06.1997). Vertical skein of hollow fiber membranes and method of maintaining clean fiber surfaces while filtering a substrate to withdraw a permeate.
- [114] Pat. US 6592759B2 (publ. 15.07.2003). Gel potting method and method to reduce twinning for filtering hollow fiber membranes.
- [115] Pat. US 4207192A (publ. 10.06.1980). Hollow filament separatory module and method of fabrication.
- [116] Pat. US 20120074054A1 (publ. 29.03.2012). Tubesheet and method for making and using the same.
- [117] Pat. US 6290756B1 (publ. 18.09.2001). Hollow fiber membrane tubesheets of variable epoxy composition and hardness.
- [118] Pat. US 3755034A (publ. 28.08.1973). Method for making a hollow fiber separatory element.
Arquivos suplementares
