МЕМБРАННОЕ ГАЗОРАЗДЕЛЕНИЕ ДЛЯ ИЗВЛЕЧЕНИЯ КИСЛЫХ КОМПОНЕНТОВ ИЗ ГАЗОВЫХ СРЕД: СОВРЕМЕННОЕ СОСТОЯНИЕ И ПЕРСПЕКТИВЫ (обзор)
- Авторы: Жебраткина-Эйдельман А.С1, Грушевенко Е.А1, Низамеев И.Р2, Борисов И.Л1,2, Волков А.В1, Баженов С.Д1
-
Учреждения:
- Институт нефтехимического синтеза им. А. В. Топчиева РАН
- Федеральный исследовательский центр Казанский научный центр РАН
- Выпуск: Том 98, № 11-12 (2025)
- Страницы: 544-572
- Раздел: Статьи
- URL: https://journal-vniispk.ru/0044-4618/article/view/356752
- DOI: https://doi.org/10.31857/S0044461825090013
- ID: 356752
Цитировать
Аннотация
В обзоре рассмотрена проблема очистки газовых потоков от кислых (CO2, H2S, SOx, NOx) газов, обоснована целесообразность применения технологии мембранного газоразделения. Представлен анализ рынка газоразделительных мембран и дан критический анализ существующих разработок в области мембранного материаловедения и коммерческих мембранных решений для выделения кислых газов. Обсуждены потенциальные области применения перспективных мембранных материалов. Описаны направления развития мембранного удаления кислых компонентов из газовых сред, обозначены нерешенные проблемы и возможности для будущих исследований в этой области.
Ключевые слова
Об авторах
А. С Жебраткина-Эйдельман
Институт нефтехимического синтеза им. А. В. Топчиева РАН
Email: evgrushevenko@ips.ac.ru
ORCID iD: 0009-0007-3889-5750
Москва
Е. А Грушевенко
Институт нефтехимического синтеза им. А. В. Топчиева РАН
Автор, ответственный за переписку.
Email: evgrushevenko@ips.ac.ru
ORCID iD: 0000-0002-6643-3736
к.х.н. Москва
И. Р Низамеев
Федеральный исследовательский центр Казанский научный центр РАН
Email: evgrushevenko@ips.ac.ru
ORCID iD: 0000-0002-5420-6181
к.х.н.
КазаньИ. Л Борисов
Институт нефтехимического синтеза им. А. В. Топчиева РАН; Федеральный исследовательский центр Казанский научный центр РАН
Email: evgrushevenko@ips.ac.ru
ORCID iD: 0000-0002-0406-6280
д.х.н.
Москва; КазаньА. В Волков
Институт нефтехимического синтеза им. А. В. Топчиева РАН
Email: evgrushevenko@ips.ac.ru
ORCID iD: 0000-0003-4524-4597
д.х.н.
МоскваС. Д Баженов
Институт нефтехимического синтеза им. А. В. Топчиева РАН
Email: evgrushevenko@ips.ac.ru
ORCID iD: 0000-0002-2010-5294
к.х.н.
МоскваСписок литературы
- International Energy Agency (IEA) Global energy review 2021 IEA. Paris, 2021. https://iea.blob.core.windows.net/assets/d0031107-401d-4a2f-a48b-9eed19457335/GlobalEnergyReview2021.pdf (дата обращения: 26.08.2025).
- Liu Y., Sim J., Hailemariam R. H., Lee J., Rho H., Park K.-D., Kim D. W., Woo Y. C. Status and future trends of hollow fiber biogas separation membrane fabrication and modification techniques // Chemosphere. 2022. V. 303. Article 134959. https://doi.org/10.1016/j.chemosphere.2022.134959
- Sahoo R., Mondal S., Mukherjee D., Das M. C. Metal–organic frameworks for CO2 separation from flue and biogas mixtures // Adv. Funct. Mater. 2022. V. 32. N 45. Article 2207197. https://doi.org/10.1002/adfm.202207197
- The Paris Agreement. 2016 United Nations Framework Convention on Climate Change (UNFCCC). https://unfccc.int/sites/default/files/resource/parisagreement_publication.pdf (дата обращения: 26.08.2025).
- Hoegh-Guldberg O., Jacob D., Taylor M., Bolaños T. G., Bindi M., Brown S., Camilloni I. A., Diedhiou A., Djalante R., Ebi K., Engelbrecht F., Guiot J., Hijioka Y., Mehrotra S., Hope C. W., Payne A. J., Pörtner H.-O., Seneviratne S. I., Thomas A., Warren R., Zhou G. The human imperative of stabilizing global climate change at 1.5°C // Science. 2019. V. 365. N 6459. Article eaaw6974. https://doi.org/10.1126/science.aaw697
- Masson-Delmotte V., Zhai P., Pörtner H. O., Roberts D., Skea J., Shukla P. R., Pirani A., Moufouma-Okia W., Péan C., Pidcock R., Connors S., Matthews J. B. R., Chen Y., Zhou X., Gomis M. I., Lonnoy E., Maycock T., Tignor M., Waterfield T. (Eds). IPCC special report: Global warming of 1.5°C, Intergovernmental Panel on Climate Change (IPCC). 2019.
- Shi Zh., Zhang J., Xiao Z., Lu T., Ren X., Wei H. Effects of acid rain on plant growth: A meta-analysis // J. Environ. Manag. 2021. V. 297. N 4. Article 113213. https://doi.org/10.1016/j.jenvman.2021.113213
- Liu Z., Yang J., Zhang J., Xiang H., Wei H. A bibliometric analysis of research on acid rain // Sustainability. 2019. V. 11. N 11. P. 3077. https://doi.org/10.3390/su11113077
- Прогноз развития энергетики мира и России 2024 / Под ред. А. А. Макарова, В. А. Кулагина, Д. А. Грушевенко, А. А. Галкиной. ИНЭИ РАН. М., 2024. 207 с. ISBN 978-5-91438-038-7
- Cereceda-Balic F., Toledo M., Vidal V., Guerrero F., Diaz-Robles Luis A., Petit-Breuilh X., Lapuerta M. Emission factors for PM2.5, CO, CO2, NOx, SO2 and particle size distributions from the combustion of wood species using a new controlled combustion chamber 3CE // Sci. Total Environ. 2017. V. 584–585. P. 901–910. https://doi.org/10.1016/j.scitotenv.2017.01.136
- Yen H., Ho Sh., Chen Ch., Chang J. CO2, NOx and SOx removal from flue gas via microalgae cultivation: A critical review // Biotechnol. J. 2015. V. 10. N 6. P. 829–839. https://doi.org/10.1002/biot.201400707
- Abdullah A., Ahmed A., Akhter P., Razzaq A., Zafar M., Hussain M., Shahzad N., Majeed K., Khurrum Sh., Saifullah Abu Bakar M., Park Young-Kwon. Bioenergy potential and thermochemical characterization of lignocellulosic biomass residues available in Pakistan // Korean J. Chem. Eng. 2020. V. 37. N 11. P. 1899–1906. https://doi.org/10.1007/s11814-020-0624-0
- Pasichnyk M., Stanovský P., Polezhaev P., Zach B., Šyc M., Bobák M., Jansen J. C., Přibyl M., Bara J. E., Friess K., Havlica J., Gin D. L., Noble R. D., Izák P. Membrane technology for challenging separations: Removal of CO2, SO2 and NOx from flue and waste gases // Sep. Purif. Technol. 2023. V. 323. Article 124436. https://doi.org/10.1016/j.seppur.2023.124436
- Drioli E., Iulianelli A. Membrane engineering: Latest advancements in gas separation and pre-treatment processes, petrochemical industry and refinery, and future perspectives in emerging applications // Fuel Process. Technol. 2020. V. 206. Article 106464. https://doi.org/10.1016/j.fuproc.2020.106464
- Сигиневич Д. А., Ефимова А. Н. Переработка попутного нефтяного газа как ресурс развития газонефтехимической отрасли в Российской Федерации // Вестн. Евразийской науки. 2018. Т. 10. № 5. С. 1–14. https://esj.today/PDF/44ECVN518.pdf
- Газ природный промышленного и коммунально-бытового назначения. Технические условия. ГОСТ 5542–2022. Межгосударственный стандарт. Дата введения 2023-01-01.
- MacDowell N., Florin N., Buchard A., Hallett J., Galindo A., Jackson G., Adjiman C. S., Williams C. K., Shah N., Fennell P. An overview of CO2 capture technologies // Energy Environ. Sci. 2010. V. 3. P. 1645–1669. https://doi.org/10.1039/C004106H
- Ebner A. D., Ritter J. A. State-of-the-art adsorption and membrane separation processes for carbon dioxide production from carbon dioxide emitting industries // Sep. Sci. Technol. 2009. V. 44. P. 1273–1421. https://doi.org/10.1080/01496390902733314
- Алентьев А. Ю., Волков А. В., Воротынцев И. В., Максимов А. Л., Ярославцев А. Б. Мембранные технологии для декарбонизации // МиМТ. 2021. Т. 11. № 5. С. 255–273. https://doi.org/10.1134/S2218117221050023
- Wang X. X., Song C. S. Carbon capture from flue gas and the atmosphere: A perspective // Front. Energy Res. 2020. V. 8 P. 560–849. https://doi.org/10.3389/fenrg.2020.560849
- Seagraves J., Weiland R. Troubleshooting amine plants using mass transfer rate-based simulation tools // Laurance Reid Gas Conditioning Conference. University of Oklahoma, Norman, Oklahoma. 2011. https://studylib.net/doc/9978004/troubleshooting-amine-plants-using-mass-transfer-rate (дата обращения: 11.06.2025).
- Баженов С. Д., Новицкий Э. Г., Василевский В. П., Грушевенко Е. А., Биенко А. А., Волков А. В. Термостабильные соли и методы их выделения из алканоламиновых абсорбентов диоксида углерода (обзор) // ЖПХ. 2019. Т. 92 № 8. С. 957–979. https://doi.org/10.1134/S0044461819080024
- Živković N. V., Šerbanović S. P., Živković E. M., Kijevčanin M. Lj., Stefanović P. Lj. Wet flue gas desulphurisation procedures and relevant solvents thermophysical properties determinatio // Hemijska Industrija. 2014. V. 68 (4) P. 491–500. https://doi.org/10.2298/hemind130610074z
- Guidelines for Handling and Management of Flue Gas Desulphurized (FGD) Gypsum 2023. www.cpcb.nic.in (дата обращения: 11.06.2025).
- Muhammad Adli Hanif, Naimah Ibrahim, Aishah Abdul Jalil. Sulfur dioxide removal: An overview of regenerative flue gas desulfurization and factors affecting desulfurization capacity and sorbent regeneration // Environ. Sci. Pollut. Res. 2020. V. 27. P. 27515–27540. https://doi.org/10.1007/s11356-020-09191-4
- Tagliabue M., Farrusseng D., Valencia S., Aguado S., Ravon U., Rizzo C., Corma A., Mirodatos C. Natural gas treating by selective adsorption: Material science and chemical engineering interplay // Chem. Eng. J. 2009. V. 155. P. 553–566. https://doi.org/10.1016/j.cej.2009.09.010
- Tonkovich A. L. Upgrading methane using ultrafast thermal swing adsorption [R]. Velocys // DOE Project Aims to Reduce Greenhouse Gas Emissions While Recovering Methane Energy Streams, Project N 41905, 2004. https://digital.library.unt.edu/ark:/67531/metadc892516/m2/1/high_res_d/883122.pdf (дата обращения: 11.08.2025).
- US Environmental Protection Agency. Upgrading drained coal mine methane to hipeline quality: A report on the commercial status of system suppliers // US Environmental Protection Agency, C. M. O. Program, 2008. https://nepis.epa.gov/Exe/ZyPDF.cgi/P1004NI6.PDF?Dockey=P1004NI6.PDF (дата обращения: 11.08.2025).
- US EPA. Technical and economic assessment of potential to upgrade gob gas to pipeline qualtiy // US Environmental Protection Agency, Office of Air and Radiation (6202J). 430-R-97-012, 1997. https://nepis.epa.gov/Exe/ZyPDF.cgi/600009R7.PDF?Dockey=600009R7.PDF (дата обращения: 11.08.2025).
- Chen C., Park D.-W., Ahn W.-S. CO2 capture using zeolite 13X prepared from bentonite // Appl. Surf. Sci. 2014. V. 292. P. 63–67. http://dx.doi.org/10.1016/j.apsusc.2013.11.064
- Hao G.-P., Li W.-C., Lu A.-H. Novel porous solids for CO2 capture // J. Mater. Chem. 2011. V. 21. P. 6447–6451. https://doi.org/10.1039/C0JM03564E
- Sun Y., Zwolińska E., Chmielewski A. G. Abatement technologies for high concentrations of NOx and SO2 removal from exhaust gases: A review // Crit. Rev. Env. Sci. Technol. 2016. V. 46 (2). P. 119–142. https://doi.org/10.1080/10643389.2015.1063334
- Asghar U., Rafiq S., Anwar A., Iqbal T., Ahmed A., Jamil F., Khurram M. S., Akbar M. M., Farooq A., Shah N. S., Park Y.-K. Review on the progress in emission control technologies for the abatement of CO2, SOx and NOx from fuel combustion // J. Environ. Chem. Eng. 2021. V. 9 (5). https://doi.org/10.1016/j.jece.2021.106064
- Dong R. F., Lu H. F., Yu Y. S., Zhang Z. X. A feasible process for simultaneous removal of CO2, SO2 and NOx in the cement industry by NH3 scrubbing // Appl. Energy. 2012. V. 97. P. 185–191. https://doi.org/10.1016/j.apenergy.2011.12.039
- Leung D. Y. C., Caramanna G., Maroto-Valer M. M. A overview of current status of carbon dioxide capture and storage technologies // Renew. Sust. Energ. Rev. 2014. V. 39. P. 426–443. https://doi.org/10.1016/j.rser.2014.07.093
- Song C., Liu Q., Deng S., Li H., Kitamura Y. Cryogenic-based CO2 capture technologies: State-of-the-art developments and current challenges // Renew. Sust. Energ. Rev. 2019. V. 101. P. 265–279. https://doi.org/10.1016/j.rser.2018.11.018
- Wan Yun Hong. A techno-economic review on carbon capture, utilisation and storage systems for achieving a net-zero CO2 emissions future // Carbon Capture Sci. Technol. 2022. V. 3. Article 100044. https://doi.org/10.1016/j.ccst.2022.100044
- Tuinier M. J., Hamers H. P., M. van Sint Annaland. Techno-economic evaluation of cryogenic CO2 capture — A comparison with absorption and membrane technology // Int. J. Greenh. Gas Control. 2011. V. 5. P. 1559–1565. https://doi.org/10.1016/j.ijggc.2011.08.013
- Song C. F., Kitamura Y., Li S. H. Evaluation of Stirling cooler system for cryogenic CO2 capture // Appl. Energy. 2012. V. 98. P. 491–501. https://doi.org/10.1016/j.apenergy.2012.04.013
- Srivastava R. Synthesis and applications of ordered and disordered mesoporous zeolites: Present and future prospective // Catal. Today. 2018. V. 309. P. 172–188. https://doi.org/10.1016/j.cattod.2017.08.017
- Lin H., He Z., Sun Z., Kniep J., Ng A., Baker R. W., Merkel T. C. CO2-selective membranes for hydrogen production and CO2 capture — Part II: Techno-economic analysis // J. Membr. Sci. 2015. V. 493. P. 794–806. https://doi.org/10.1016/j.memsci.2015.02.042
- Meng F., Meng Yu., Ju T., Han S., Lin L., Jiang J. Research progress of aqueous amine solution for CO2 capture: A review // Renew. Sust. Energ. Rev. 2022. V. 168. Article 112902. https://doi.org/10.1016/j.rser.2022.112902
- Hekmatmehr H., Esmaeili A., Pourmahdi M., Atashrouz S., Abedi A., M. Ali Abuswer, Nedeljkovic D., Latifi M., Farag S., Mohaddespour A. Carbon capture technologies: A review on technology readiness level // Fuel. 2024. V. 363. Article 130898. https://doi.org/10.1016/j.fuel.2024.130898
- Akinmoladun A., Tomomewo O. St. Advances and future perspectives in post-combustion carbon capture technology using chemical absorption process: A review // Carbon Capture Sci. Technol. 2025. V. 16. Article 100461. https://doi.org/10.1016/j.ccst.2025.100461
- Cheng C.-Y., Kuo C.-C., Yang M.-W., Zhuang Z.-Y., Lin P.-W., Chen Y.-F., Yang H.-S., Chou C.-T. CO2 capture from flue gas of a coal-fired power plant using three-bed PSA process // Energies. 2021. V. 14. P. 3582. https://doi.org/10.3390/en14123582
- Zanco S. E., Pérez-Calvo J.-F., Gasós A., Cordiano B., Becattini V., Mazzotti M. Post-combustion CO2 capture: A comparative techno-economic assessment of three technologies using a solvent, an adsorbent, and a membrane // ACS Eng. 2021. V. 1. P. 50–72. https://doi.org/10.1021/acsengineeringau.1c00002
- Tuinier M. J., M. van Sint Annaland, Kuipers J. A. M. A novel process for cryogenic CO2 capture using dynamically operated packed beds — An experimental and numerical study // Int. J. Greenh. Gas Control. 2011. V. 5. P. 694–701. https://doi.org/10.1016/j.ijggc.2010.11.011
- Zhai H., Rubin E. S. Techno-economic assessment of polymer membrane systems for postcombustion carbon capture at coal-fired power plants // Environ. Sci. Technol. 2013. V. 47. P. 3006–3014. https://doi.org/10.1021/es3050604
- Bazhenov S., Chuboksarov V., Maximov A., Zhdaneev O. Technical and economic prospects of CCUS projects in Russia // Sustain. Mater. Technol. 2022. V. 33. Article e00452. https://doi.org/10.1016/j.susmat.2022.e00452
- Jana A., Modi A. Recent progress on functional polymeric membranes for CO2 separation from flue gases: A review // Carbon Capture Sci. Technol. 2024. V. 11. Article 100204. https://doi.org/10.1016/j.ccst.2024.100204
- Adhikari B., Orme C. J., Stetson C., Klaehn J. R. Techno-economic analysis of carbon dioxide capture from low concentration sources using membranes // Chem. Eng. J. 2023. V. 474. Article 145876. https://doi.org/10.1016/j.cej.2023.145876
- Pohlmann J., Bram M., Wilkner K., Brinkmann T. Pilot scale separation of CO2 from power plant flue gases by membrane technology // Int. J. Greenh. Gas Control. 2016. V. 53. P. 56–64. https://doi.org/10.1016/j.ijggc.2016.07.033
- Brinkmann T., Lillepärg J., Notzke H., Pohlmann J., Shishatskiy S., Wind J., Wolff Th. Development of CO2 selective poly(ethylene oxide)-based membranes: From laboratory to pilot plant scale // Engineering. 2017. V. 3. P. 485–493. https://doi.org/10.1016/J.ENG.2017.04.004
- Cui Q., Wang B., Zhao X., Zhang G., He Z., Long Y., Sun Y., Ku A. Y. Post-combustion slipstream CO2-capture test facility at Jiangyou power plant, sichuan, china: Performance of a membrane separation module under dynamic power-plant operations // Clean Energy. 2021. V. 5 (4). P. 742–755. https://doi.org/10.1093/ce/zkab049
- Gkotsis P., Peleka E., Zouboulis A. Membrane-based technologies for post-combustion CO2 capture from flue gases: Recent progress in commonly employed membrane materials // Membr. 2023. V. 13 (12). P. 898. https://doi.org/10.3390/membranes13120898
- Lin Z., Yuan Z., Dai Z., Shao L., Eisen M. S., He X. A review from material functionalization to process feasibility on advanced mixed matrix membranes for gas separations // Chem. Eng. J. 2023. V. 475. Article 146075. https://doi.org/10.1016/j.cej.2023.146075
- Breen A., Baker R., Behm Ph., Freeman B., Hao P., Hofmann Th., Kniep J., Merkel T., Salim W., McKaskle R., Pierik D., Morris W. Large pilot testing of MTRʹs membrane-based post-combustion CO2 capture process // Proceedings of the 17th Greenhouse Gas Control Technologies Conference (GHGT-17) 2024. 20–24 October. P. 1–14. https://doi.org/10.2139/ssrn.5070818
- Алентьев А. Ю., Рыжих В. Е., Сырцова Д. А., Белов Н. А. Полимерные материалы для решения актуальных задач мембранного газоразделения // Успехи химии. 2023. T. 92. № 6. RCR5083. https://doi.org/10.59761/RCR5083
- McHattie J. S., Koros W. J., Paul D. R. Gas transport properties of polysulphones: 1. Role of symmetry of methyl group placement on bisphenol rings // Polymer. 1991. V 32. P. 840. https://doi.org/10.1016/0032-3861(91)90508-G
- Hao J., Tanaka K., Kita H., Okamoto K.-I. Synthesis and properties of polyimides from thianthrene-2,3,7,8-tetracarboxylic dianhydride-5,5,10,10-tetraoxide // J. Polym. Sci. A: Polym. Chem. 1998. V. 36. P. 485. https://doi.org/10.1002/(SICI)1099-0518(199802)36:3<485::AID-POLA12>3.0.CO;2-J
- Muruganandam N., Paul D. R. Gas Sorption and Transport in Substituted Polycarbonates // J. Polym. Sci. B: Polym. Phys. 1987. V. 25. P. 1999–2026. https://doi.org/10.1002/polb.1987.090250917
- Li J., Wang S., Nagai K., Nakagawa T., Mau A. W.-H. Effect of polyethyleneglycol (PEG) on gas permeabilities and permselectivities in its cellulose acetate (CA) blend membranes // J. Membr. Sci. 1998. V. 138. P. 143–152. https://doi.org/10.1016/S0376-7388(97)00212-3
- Escorihuela S., Tena A., Shishatski y S., EscolaÂstico S., Brinkmann T., Serra J., Abetz V. Gas separation properties of polyimide thin films on ceramic supports for high temperature applications // Membr. 2018. V. 8. N 16. P. 16. https://doi.org/10.3390/membranes8010016
- Wright C. T., Paul D. R. Gas sorption and transport in UV-irradiated poly(2,6-dimethyl-1,4-phenylene oxide) films // J. Appl. Polym. Sci. 1998. V. 67. P. 875. https://doi.org/10.1002/(SICI)1097-4628(19980131)67:5%3C875::AIDAPP13%3E3.0.CO;2-N
- Yankova N. A., Yablokova M. Yu., Gasanova L. G., Klyamkin S. Influence of chemical structure on gas separation properties of polymer materials based on polyetherimide Ultem® and silicon containing copolyetherimide Siltem® // Recent Adv. Petrochem. Sci. 2017. V. 3. P. 1–4. https://doi.org/10.19080/RAPSCI.2017.03.555622
- Ramírez-Santos Á. A., Castel Ch., Favre E. Utilization of blast furnace flue gas: Opportunities and challenges for polymeric membrane gas separation processes // J. Membr. Sci. 2017. V. 526. P. 191–204. http://dx.doi.org/10.1016/j.memsci.2016.12.033
- Membrane Systems for Natural Gas // Fuel Gas Conditioning: рекламный буклет компании Membrane Technology & Research. http://www.mtrinc.com/pdf_print/natural_gas/MTR_Brochure_FGC.pdf. (дата обращения: 01.07.2025)
- Pat. US 2010326273 (publ. 2010). Plasticization resistant membranes
- Bernardo P., Drioli E., Golemme G. Membrane gas separation: A review/state of the art // Ind. Eng. Chem. Res. 2009. V. 48. N 10. P. 4638–4663. https://doi.org/10.1021/ie8019032
- Dortmundt D., Doshi K. Recent developments in CO2 removal // Membr. Techn. 1999. P. 32
- Scholes C. A., Qader A., Stevens G. W., Kentish S. E. Membrane pilot plant trials of CO2 separation from flue gas // Greenh. Gases: Sci. Technol. 2015. V. 5. N 3. P. 229–237. https://doi.org/10.1002/ghg.1498
- Kárászová M., Zach B., Petrusová Z., Červenka V., Bobák M., Šyc M., Izák P. Post-combustion carbon capture by membrane separation // Sep. Purif. Technol. 2020. V. 238. Article 116448. https://doi.org/10.1016/j.seppur.2019.116448
- Hou R., Fong C., Freeman B. D., Hill M. R., Xie Z. Current status and advances in membrane technology for carbon capture // Sep. Purif. Technol. 2022. V. 300. Article 121863. https://doi.org/10.1016/j.seppur.2022.121863
- Alqaheem Y., Alomair A., Vinoba M., Pérez A. Review article polymeric gas-separation membranes for petroleum refining // Int. J. Polym. Sci. 2017. V. 117. P. 19. Article 4250927. https://doi.org/10.1155/2017/4250927
- Chen Y., Ho W. S. W. High-molecular-weight polyvinylamine/piperazine glycinate membranes for CO2 capture from flue gas // J. Membr. Sci. 2016. V. 514. P. 376–384. http://dx.doi.org/10.1016/j.memsci.2016.05.005
- Fasihi M., Efimova O., Breyer C. Techno-economic assessment of CO2 direct air capture plants // J. Clean. Prod. 2019. V. 224. P. 957–980. https://doi.org/10.1016/j.jclepro.2019.03.086
- Peters L., Hussain A., Follmann M., Melin T., Hagg M.-B. CO2 removal from natural gas by employing amine aption and membrane technology —a technical and economical analysis // Chem. Eng. J. 2011. V. 172. N 2-3. P. 952–960. https://doi.org/10.1016/j.cej.2011.07.007
- He X., Hagg M.-B., Kim T.-J. Hybrid FSC membrane for CO2 removal from natural gas: Experimental, process simulation, and economic feasibility analysis // AIChE J. 2014. V. 60. N 12. P. 4174–4184. https://doi.org/10.1002/aic.14600
- Химия одноуглеродных молекул // Сборник статей I Международной научной конференции. М.: РГУ нефти и газа (НИУ) им. И. М. Губкина. 2023. https://gaschemistry.ru/science/conf/С1_2023.pdf (дата обращения: 01.07.2025)
- Закороев Р. Р., Нифонтов Ю. А., Сергеева А. С. Перспективный метод утилизации ПНГ на МНГС в целях обеспечения экологической безопасности // Тр. Крыловского гос. науч. центра. 2021. № 1. С. 237–238. https://doi.org/10.24937/2542-2324-2021-1-S-I-237-238
- Булавинов С. Л. CarboPEEK — мембранная технология ГРАСИС для переработки и утилизации попутного нефтяного газа // Хим. технология. 2008. № 8. C. 34–35
- Smit B. Carbon capture and storage: Discovering the science of CO2 // Proceedings of the Sixth Annual Conference on Carbon Capture & Sequestration. USA, 2007. https://vcresearch.berkeley.edu/sites/default/files/wysiwyg/filemanager/Philomathia_symposium_presentations/B_Smit.pdf (дата обращения: 01.07.2025)
- Baker R. W. Membrane technology and applications. 2nd Ed. // Membr. Techn. Res. 2004. ISBN: 978-0-470-02038-8. https://nzdr.ru/data/media/biblio/kolxoz/E/Baker%20R.W.%20Membrane%20Technology%20and%20Applications%20(Wiley,2004)(ISBN%200470854456)(545s)_E_.pdf (дата обращения: 02.09.2025)
- Каграманов Г. Г., Дытнерский Ю. И., Брыков В. П. Мембранное разделение газов. М.: Химия, 1991. С. 272
- Каграманов Г. Г., Вяткин Ю. Л., Шмелев А. С. Метод расчета мембранного разделения газовых смесей. М.: Хим. пром-сть сегодня. 2017. № 3. С. 52–55
- Liu M., Nothling M. D., Zhang S., Fu Q., Qiao G. G. Thin film composite membranes for postcombustion carbon capture: Polymers and beyond // Prog. Polym. Sci. 2022. V. 126. Article 101504. https://doi.org/10.1016/j.progpolymsci.2022.101504
- Robeson L. M. Correlation of separation factor versus permeability for polymeric membranes // J. Membr. Sci. 1991. V. 62. N 2. P. 165–185. https://doi.org/10.1016/0376-7388(91)80060-J
- Freeman B. D. Basis of permeability/selectivity tradeoff relations in polymeric gas separation membranes // Macromolecules. 1999. V. 32. P. 375–380. https://doi.org/10.1021/ma9814548
- Bernardo P., Drioli E., Golemme G. Membrane gas separation: A review/state of the art // Ind. Eng. Chem. Res. 2009. V. 48. N 10. P. 4638–4663. https://doi.org/10.1021/ie8019032
- Chatterjee G., Houde A. A., Stern S. A. Poly(ether urethane) and poly(ether urethane urea) membranes with high H2S/CH4 selectivity // J. Membr. Sci. 1997. V. 135. N 1. P. 99–106. https://doi.org/10.1016/S0376-7388(97)00134-8
- Flaconnʹeche B., Martin J., Klopffer M. H. Permeability, diffusion and solubility of gases in polyethylene, polyamide 11 and poly (vinylidene fluoride) // Oil & Gas Sci. Technol. 2001. V. 56. N 3. P. 261–278. https://doi.org/10.2516/ogst:2001023
- David O. C., Gorri D., Nijmeijer K., Ortiz I., Urtiaga A. Hydrogen separation from multicomponent gas mixtures containing CO, N2 and CO2 using Matrimid asymmetric hollow fiber membranes // J. Membr. Sci. 2012. V. 419-420. P. 49–56. https://doi.org/10.1016/j.proeng.2012.08.696
- Huang Y., Paul D. R. Effect of film thickness on the gas-permeation characteristics of glassy polymer membranes // Ind. Eng. Chem. Res. 2007. V. 46. N 8. P. 2342–2347. https://doi.org/10.1021/ie0610804
- Алентьев А. Ю., Чирков С. В., Никифоров Р. Ю., Белов Н. А., Орлова А. М., Кузнецов А. А., Кечекьян А. С., Кечекьян П. А., Николаев А. Ю. Влияние обработки сверхкритическим СО2 на механические и газотранспортные характеристики полиимидов на основе изомеров диэтилтолуилендиамина // МиМТ. 2025. Т. 12. № 3. С. 183–191. https://doi.org/10.31857/S2218117222030026
- Calle M., Lozano A. E., J. dе Abajo, J. G. dela Campa, Alvarez C. Design of gas separation membranes derived of rigid aromatic polyimides. 1. Polymers from diamines containing di tert-butyl side groups // J. Membr. Sci. 2010. V. 365. N 1–2. P. 145–153. https://doi.org/10.1016/j.memsci.2010.08.051
- Liu S. L., Wang R., Liu Y., Chang M. L., Chung T. S. The physical and gas permeation properties of 6FDA-durene/2,6 diaminotoluene copolyimides // Polymer. 2001. V. 42. N 21. P. 8847–8855. https://doi.org/10.1016/S0032-3861(01)00439-6
- Alentiev A. Yu., Levin I., Belov N., Nikiforov R. Y., Chirkov S., Bezgin D., Ryzhikh V., Kostina J., Shantarovich V., Grunin L. Features of the gas-permeable crystalline phase of poly-2,6-dimethylphenylene oxide // Polymers. 2022. V. 14. N 1. Article 120. https://doi.org/10.3390/polym14010120
- Koros W. J., Fleming G. K., Jordan S. M., Kim T. H., Hoehn H. H. Polymeric membrane materials for solution-diffusion based permeation separations // Prog. Polym. Sci. 1988. V. 13. N 4. P. 339–401. https://doi.org/10.1016/0079-6700(88)90002-0
- Алентьев А. Ю., Никифоров Р. Ю., Левин И. С., Царев Д. А., Рыжих В. Е., Сырцова Д. А., Белов Н. А. Газотранспортные свойства сополимеров винилиденфторида и тетрафторэтилена // МиМТ. 2023. Т. 13. № 6. С. 494–504
- Маккин Л. Свойства пленок из пластмасс и эластомеров / Пер. с англ. под ред. Е. Хрол. СПб: Научные основы и технологии, 2015. С. 527
- Aitken C. L., Koros W. J., Paul D. R. Effect of structural symmetry on transport properties of polysulfones // Macromolecules. 1992. V. 25. N 13. P. 3424–3434. https://doi.org/10.1021/ma00039a018
- Scholes C. A., Chen G. Q., Lu H. T., Kentish S. E. Crosslinked PEG and PEBAX membranes for concurrent permeation of water and carbon dioxide // Membr. 2015. V. 6. N 1. Article 1. https://doi.org/10.3390/membranes6010001
- Koros W. J., Chan A. H., Paul D. R. Sorption and transport of various gases in polycarbonate // J. Membr. Sci. 1977. V. 2. P. 165–190. https://doi.org/10.1016/S0376-7388(00)83242-1
- Sadeghi M., Afarani H. T., Tarashi Z. Preparation and investigation of the gas separation properties of polyurethane TiO2 nanocomposite membranes // Korean J. Chem. Eng. 2014. V. 32. N 1. P. 97–103. https://doi.org/10.1007/s11814-014-0198-9
- Bermesheva E. V., Wozniak A. I., Borisov I. L., Yevlampieva N. P., Vezo O. S., Karpov G. O., Bermeshev M. V., Asachenko A. F., Topchiy M. A., Gribanov P. S., Nechaev M. S., Volkov V. V., Finkelshtein E. S. Influence of the nature of chemical modification of addition poly(5-vinyl-2-norbornene) on the gas permeability of hydrocarbons // J. Polym. Sci. B. 2020. V. 62 N 3. P. 218–224. https://doi.org/10.1134/S1560090420030161
- Wozniak A. I., Bermesheva E. V., Petukhov D. I., Lunin A. O., Borisov I. L., Shantarovich V. P., Bekeshev V. G., Alentiev D. A., Bermeshev M. V. The magic of spiro-epoxy moiety: An easy way to improve CO2-separation performance of polymer membrane // Adv. Funct. Mater. 2024. V. 34. N 32. Article 2405461. https://doi.org/10.1002/adfm.202405461
- Wozniak A. I., Bermesheva E. V., Borisov I. L., Rzhevskiy S. A., Tyutyunov A. A., Ilyin S. O., Topchiy M. A., Asachenko A. F., Bermeshev M. V. Making accessible soluble silicon-containing polynorbornenes: Hydrosilylation of vinyl-addition poly(5-vinyl-2-norbornene) // Polym. Chem. 2023. V. 14. P. 5274–5285. https://doi.org/10.1039/D3PY01057K
- Wozniak A. I., Bermesheva E. V., Andreyanov F. A., Borisov I. L., Zarezin D. P., Bakhtin D. S., Gavrilova N. N., Ilyasov I. R., Nechaev M. S., Asachenko A. F., Topchiy M. A., Volkov A. V., Finkelshtein E. S., Ren X.-K., Bermeshev M. V. Modifications of addition poly(5-vinyl-2-norbornene) and gas-transport properties of the obtained polymers // React. Funct. Polym. 2020. V. 149. P. 104513. https://doi.org/10.1016/j.reactfunctpolym.2020.104513
- Sadrzadeh M., Shahidi K., Mohammadi T. Synthesis and gas permeation properties of a single layer PDMS membrane // J. Appl. Polym. Sci. 2010. V. 117. N 1. P. 33–48. https://doi.org/10.1002/app.31180
- Berean K., Ou J. Z., Nour M., Latham K., McSweeney C., Paull D., Halim A., Kentish S., Doherty C. M., Hill A. J., Kalantar-zadeh K. The effect of crosslinking temperature on the permeability of PDMS membranes: Evidence of extraordinary CO2 and CH4 gas permeation // Sep. Purif. Technol. 2014. V. 122. P. 96–104. https://doi.org/10.1016/j.seppur.2013.11.006
- Merkel T. C., Bondar V. I., Nagai K., Freeman B. D., Pinnau I. Gas sorption, diffusion, and permeation in poly (dimethylsiloxane) // J. Polym. Sci. B: Polym. Phys. 2000. V. 38. N 3. P. 415–434. https://doi.org/10.1002/(SICI)1099-0488(20000201)38:3<415::AID-POLB8>3.0.CO;2-Z
- Грушевенко Е. А., Соколов С. Е., Холодков Д. Н., Арзуманян А. В., Кузнецов Н. Ю., Никульшин П. В., Баженов С. Д., Волков А. В., Борисов И. Л., Максимов А. Л.
- Guo C., Li X., Wu Y., Yang P., Yang Y., Huo S., Wen P., Wu J., Zhang Y., Lan Y. Encapsulation of hollow polystyrene particles in PDMS membranes for efficient natural gas purification // J. Environ. Chem. Eng. 2025. V. 13 (3). P. 32. https://doi.org/10.1016/j.jece.2025.116853
- Robb W. L. Thin silicone membranes-their permeation properties and some applications // Annals of the New York Academy of Sciences. 1968. V. 146. N 1. P. 119–137. https://doi.org/10.1111/j.1749-6632.1968.tb20277.x
- Ji Y., Zhang M., Guan K., Zhao J., Liu G., Jin W. High-performance CO2 capture through polymer-based ultrathin membranes // Adv. Funct. Mater. 2019. V. 29. P. 455–463. https://doi.org/10.1002/adfm.201900735
- Deng J., Dai Z., Yan J., Sandru M., Sandru E., Spontak R. J., Deng L. Facile and solvent-free fabrication of PEG-based membranes with interpenetrating networks for CO2 separation // J. Membr. Sci. 2019. V. 570–571. P. 455–463. https://doi.org/10.1016/j.memsci.2018.10.031
- Zhao H., Ding X., Yang P., Li L., Li X., Zhang Y. A novel multi-armed and star-like poly (ethylene oxide) membrane for CO2 separation // J. Membr. Sci. 2015. V. 489. P. 258–263. https://doi.org/10.1016/j.memsci.2015.04.028
- Brunetti A., Zito P. F., Borisov I., Grushevenko E., Volkov V., Volkov A., Barbieri G. CO2 separation from humidified ternary gas mixtures using a polydecylmethylsiloxane composite membrane // Fuel Process. Technol. 2020. V. 210. https://doi.org/10.1016/j.fuproc.2020.106550
- Шутова А. А., Трусов А. Н., Бермешев М. В., Легков С. А., Грингольц М. Л., Финкельштейн Е. Ш., Бондаренко Г. Н., Волков А. В.
- Karpov G. O., Borisov I. L., Volkov A. V., Finkelshtein E. S., Bermeshev M. V. Synthesis and gas transport properties of addition polynorbornene with perfluorophenyl side groups // Polymers. 2020. V. 12. N 6. P. 1282. https://doi.org/10.3390/polym12061282
- Меденцева Е. И., Хрычикова А. П., Бермешева Е. В., Борисов И. Л., Петухов Д. И., Карпов Г. О., Моронцев А. А., Нестерова О. В., Бермешев М. В.
- Wozniak A., Bermesheva E., Petukhov D., Lunin A., Borisov I., Shantarovich V., Bekeshev V., Alentiev D., Bermeshev M. The magic of spiro-epoxy moiety: An easy way to improve CO2-separation performance of polymer membrane // Adv. Funct. Mater. 2024. V. 34. N 32. P. 2405461. https://doi.org/10.1002/adfm.202405461
- Sakaguchi T., Katsura F., Iwase A., Hashimoto T. CO2-permselective membranes of crosslinked poly (vinyl ether) s bearing oxyethylene chains // Polymer. 2014. V. 55. N 6. P. 1459–1466. https://doi.org/10.1016/j.polymer.2014.02.012
- Vaughn J. T., Koros W. J., Johnson J. R., Karvan O. Effect of thermal annealing on a novel polyamide-imide polymer membrane for aggressive acid gas separations // J. Membr. Sci. 2012. V. 401–402. P. 163–174. https://doi.org/10.1016/j.memsci.2012.01.047
- Vaughnand J. T., Koros W. J. Analysis of feed stream acid gas concentration effects on the transport properties and separation performance of polymeric membranes for natural gas sweetening: A comparison between a glassy and rubbery polymer // J. Membr. Sci. 2014. V. 465. P. 107–116. http://dx.doi.org/10.1016/j.memsci.2014.03.029
- Heilman W., Tammela V., Meyer J. A., Stannett V., Szwarc M. Permeability of polymer films to hydrogen sulfide gas // Ind. Eng. Chem. 1956. V. 48. N 4. P. 821–824. http://dx.doi.org/10.1021/ie50556a046
- Orme C. J., Klaehn J. R., Stewart F. F. Gas permeability and ideal selectivity of poly[bis-(phenoxy)phosphazene], poly[bis-(4-tert-butylphenoxy)phosphazene], and poly[bis-(3,5-di-tert-butylphenoxy)1.2(chloro)0.8phosphazene] // J. Membr. Sci. 2004. V. 238. P. 47–55. https://doi.org/10.1016/j.memsci.2004.02.032
- Chatterjee G., Houde A. A., Stern S. A. Poly(ether urethane) and poly(ether urethane urea) membranes with high H2S/CH4 selectivity // J. Membr. Sci. 1997. V. 135. N 1. P. 99–106. https://doi.org/10.1016/S0376-7388(97)00134-8
- Orme C. J., Stewart F. F. Mixed gas hydrogen sulfide permeability and separation using supported polyphosphazene membranes // J. Membr. Sci. 2005. V. 253. P. 243–249. https://doi.org/10.1016/j.memsci.2004.12.034
- Малых О. В., Голуб А. Ю., Тепляков В. В.
- Rousseau R. Handbook of Separation Process Technology. US: John Wiley & Sons, 1987.
- Merkel T. C., Gupta R. P., Turk B. S., Freeman B. D. Mixed gas permeation of syngas components in poly(dimethylsiloxane) and poly(1-trimethylsilyl-1-propyne) at elevated temperature // J. Membr. Sci. 2001. V. 191. P. 85–94. https://doi.org/10.1016/S0376-7388(01)00452-5
- Harrigan D. J., Yang J., Sundell B. J., Lawrence III J. A., OʹBrien J. T., Ostraat M. L. Sour gas transport in poly(ether-b-amide) membranes for natural gas separations // J. Membr. Sci. 2020. V. 595. P. 117–497. https://doi.org/10.1016/j.memsci.2019.117497
- Dytnerskii Y., Kagramanov G., Storozhuk I., Kovalenko N. SO2 separation from gaseous mixtures by membranes // J. Membr. Sci. 1989. V.41. P. 49–54.
- Kim S. J., Min B. R., Lee T. H. A study on separation of N2–SO2 mixed gas by polymer membranes // J. Membr. Sci. 1992. V. 2. N 2. P. 135–143.
- Peterson E. S., Stone M. L., Cummings D. G., McCaffey R. R. Mixed gas separation properties of phosphazene polymer membranes // Sep. Sci. Technol. 1993. V. 28. P. 423–440. http://dx.doi.org/10.1080/01496399308019498
- Nelson B. An evaluation of polymer membranes for the gaseous separation of NOx and SO2 from flue gas. NY: ProQuest LLC, 2018.
- Baker R. W., Cussler E. L., Eykamp W., Koros W. J., Riley R. L., Strathmann H. Membrane separation systems: Recent developments and future directions. U.S.A.: Elsevier Science, 1991. P. 451. ISBN: 08155-1270-8. https://pdfcoffee.com/membrane-separation-system-pdf-free.html
- Kuehne D. L., Friedlander S. K. Selective transport of sulfur dioxide through polymer membranes // Ind. Eng. Chem. Process Des. Dev. 1980. V. 19. N 4. P. 609–616. https://doi.org/10.1021/i260076a018
- Pat. US 3625734A (publ. 1971). Ultrathin liquid membrane construction for separating sulfur dioxide from gas mixtures.
- Kim J. H., Ha S. Y., Lee Y. M. Gas permeation of poly(amide-6-b-ethylene oxide) copolymer // J. Membr. Sci. 2001. V. 190. N 2. P. 179–193. https://doi.org/10.1016/S0376-7388(01)00444-6
- Benarie M., Chuong B. Use of some plastic materials for retaining and preserving samples of polluted atmospheres // Atmos. Environ. 1969. V. 3. N 4. P. 475–477.
- Pasternak R., Christensen M., Heller J. Diffusion and permeation of oxygen, nitrogen, carbon dioxide, and nitrogen dioxide through polytetrafluoroethylene // Macromolecules. 1970. V. 3. N 3. P. 366–371. https://doi.org/10.1021/ma60015a020
- Scholes C. A., Chen G. Q., Stevens G. W., Kentish S. E. Nitric oxide and carbon monoxide permeation through glassy polymeric membranes for carbon dioxide separation // Chem. Eng. Res. Des. 2011. V. 89. N 9. P. 1730–1736. https://doi.org/10.1016/j.cherd.2011.04.001
- Hughes R., Jiang B. The permeabilities of carbon dioxide, nitrous oxide and oxygen and their mixtures through silicone rubber and cellulose acetate membranes // Gas Sep. Purif. 1995. V. 9. N 1. P. 27–30. https://doi.org/10.1016/0950-4214(95)92173-A
- Li J., Rong H., Chen C., Li Z., Zuo J., Wang W., Liu X., Guan Y., Yang X., Liu Y., Zou X., Zhu G. Synthesis optimization of SSZ-13 zeolite membranes by dual templates for N2/NO2 separation // Chem. Res. Chin. Univ. 2022. V. 38. N 1. P. 250–256. https://doi.org/10.1007/s40242-021-1420-z
- Li Z., Li J., Rong H., Zuo J., Yang X., Xing Y., Liu Y., Zhu G., Zou X. SO2/NO2 separation driven by NO2 dimerization on SSZ-13 zeolite membrane // J. Am. Chem. Soc. 2022. V. 144. N 15. P. 6687–6691. https://doi.org/10.1021/jacs.2c01635
- Xu Z., Zheng Q., Wang S., Zhang Z., Liu Z., Zhang G., Jin W. Fabrication of molten nitrate/nitrite dual-phase four-channel hollow fiber membranes for nitrogen oxides separation // J. Membr. Sci. 2021. V. 635. https://doi.org/10.1016/j.memsci.2021.119506
- Stern S. A., Shah V. M., Hardy B. J. Structure-permeability relationships in silicone polymers // J. Polym. Sci. B: Polym. Phys. 1987. V. 25. N 6. P. 12633–1298. https://doi.org/10.1002/polb.1987.090250607
- Crespo J., Boeddeker K. Membrane processes in separation and purification. Springer, 2013.
- Al-Juaied M., Koros W. J. Performance of natural gas membranes in the presence of heavy hydrocarbons // J. Membr. Sci. 2006. V. 274. N 1–2. P. 227–243. https://doi.org/10.1016/j.memsci.2005.08.013
- Scholes C. A., Kentish S. E., Stevens G. W. Effects of minor components in carbon dioxide capture using polymeric gas separation membranes // Sep. Purif. Rev. 2009. V. 38. P. 1–44. http://dx.doi.org/10.1080/15422110802411442
- Pasternak R. A., Christenson M. V., Heller J. Diffusion and permeation of oxygen, nitrogen, carbon dioxide, and nitrogen dioxide through polytetrafluoroethylene // Macromolecules. 1970. V. 3. N 3. P. 366–371. https://doi.org/10.1021/ma60015a020
- Scholes C. A., Chen G. Q., Stevens G. W., Kentish S. E. Nitric oxide and carbon monoxide permeation through glassy polymeric membranes for carbon dioxide separation // Chem. Eng. Res. Des. 2011. V. 89. N 9. P. 1730–1736. https://doi.org/10.1016/j.cherd.2011.04.001
- Alentiev A. Yu., Ryzhikh V. E., Belov N. A. Polymer materials for membrane separation of gas mixtures containing CO2 // J. Polym. Sci. C. 2021. V. 63. P. 181–198. https://doi.org/10.1134/S1811238221020016
- Pat. EP 0422885B1 (publ. 1994). Phenylindane-containing polyimide gas separation membranes.
- Sanders D. F., Smith Z. P., Guo R. // Energy-efficient polymeric gas separation membranes for a sustainable future: A review // Polymer. 2013. V. 54. N 18. P. 4729–4761. http://dx.doi.org/10.1016/j.polymer.2013.05.075
- Liu S. L., Shao L., Chua M. L., Lau C. H., Wang H., Quan S. Recent progress in the design of advanced peo-containing membranes for CO2 removal // Prog. Polym. Sci. 2013. V. 38. P. 1089–1120. http://dx.doi.org/10.1016/j.progpolymsci.2013.02.002
- Car A., Stropnik C., Yave W., Peinemann K. Pebax®/polyethylene glycol blend thin film composite membranes for CO2 separation: Performance with mixed gases // Sep. Purif. Technol. 2008. V. 62. P. 110–117. https://doi.org/10.1016/j.seppur.2008.01.001
- Fu Q., Kim J., Gurr P. A., Scofield J. M. P., Kentish S. E., Qiao G. G. A novel cross-linked nanocoating for carbon dioxide capture // Energy Environ. Sci. 2016. V. 9. P. 434–440. https://doi.org/10.1039/C5EE02433A
- Zhu B., Jiang X., He S., Yang X., Long J., Zhang Y. Rational design of poly(ethylene oxide) based membranes for sustainable CO2 capture // J. Mater. Chem. A. 2020. V. 8. P. 24233–24252. https://doi.org/10.1039/d0ta08806d
- Li H., Freeman B. D., Ekiner O. M. Gas permeation properties of poly(urethane-urea)s containing different polyethers // J. Membr. Sci. 2011. V. 369. N 1–2. P. 49–58. https://doi.org/10.1016/j.memsci.2010.11.024
- Sridhar S., Smitha B., Mayor S., Prathab B., Aminabhavi T. M. Gas permeation properties of polyamide membrane prepared by interfacial polymerization // J. Mater. Sci. 2007. V. 42. N 22. P. 9392–9401. https://doi.org/10.1007/s10853-007-1813-5
- Lin H., Freeman B. Materials selection guidelines for membranes that remove CO2 from gas mixtures // J. Mol. Struct. 2005. V. 739. P. 57–74. https://doi.org/10.1016/j.molstruc.2004.07.045
- Dibrov G., Ivanov M., Semyashkin M., Sudin V., Kagramanov G. High-pressure aging of asymmetric torlon® hollow fibers for helium separation from natural gas // Fibers. 2018. V. 6. N 4. P. 83. https://doi.org/10.3390/fib6040083
- Грушевенко Е. А., Борисов И. Л., Волков А. В. Высокоселективные полисилоксановые мембраны для разделения газов и жидкостей (обзор) // Нефтехимия. 2021. T. 61. № 5. С. 571–590
- Lötters J. C., Olthuis W., Veltink P. H., Bergveld P. // J. Micromech. Microeng. 1997. V. 7. N 3. P. 145. https://doi.org/10.1088/0960-1317/7/3/017
- Chen W. F., Kuo P. L. Covalently cross-linked perfluorosulfonated membranes with polysiloxane framework // Macromolecules. 2007. V. 40. N 6. P. 1987–1994. https://doi.org/10.1021/ma062512p
- Scofield J. M. P., Gurr P. A., Kim J., Fu Q., Halim A., Kentish S. E., Qiao G. G. High-performance thin film composite membranes with well-defined poly(dimethylsiloxane)-b-poly- (ethylene glycol) copolymer additives for CO2 separation // J. Polym. Sci. A: Polym. Chem. 2015. V. 53. P. 1500–1511. https://doi.org/10.1002/pola.27628
- Liu M., Nothling M. D., Webley P. A., Fu Q., Qiao G. Postcombustion carbon capture using thin-film composite membranes // Acc. Chem. Res. 2019. V. 52. P. 1905–1914. https://doi.org/10.1021/acs.accounts.9b00111
- Yave W., Car A., Wind J., Peinemann K. Nanometric thin film membranes manufactured on square meter scale: Ultra-thin films for CO2 capture // Nanotechnology. 2010. V. 21. Article 395301. https://doi.org/10.1088/0957-4484/21/39/395301
- Uragami T., Sumida I., Miyata T., Shiraiwa T., Tamura H., Yajima T. Pervaporation characteristics in removal of benzene from water through polystyrene-poly (dimethylsiloxane) IPN membranes // Mater. Sci. Appl. 2011. V. 2. N 3. P. 169. https://doi.org/10.4236/msa.2011.23021
- Борисов И. Л., Ушаков Н. В., Волков В. В., Финкельштейн Е. Ш. Полидиметилсилдиметилен- и полидиметилсилтриметилендиметилсилоксаны — материалы для сорбционно-селективных мембран // Изв. АН. Сер. хим. 2016. № 4. С. 1020–1022
- George G., Bhoria N., Alhallaq S., Abdala A., Mittal V. Polymer membranes for acid gas removal from natural gas // Sep. Purif. Technol. 2016. V. 158. P. 333–356. http://dx.doi.org/10.1016/j.seppur.2015.12.033
- Fang M., Wu C., Yang Z., Wang T., Xia Y., Li J. ZIF-8/ PDMS mixed matrix membranes for propane/nitrogen mixture separation: Experimental result and permeation model validation // J. Membr. Sci. 2015. V. 474. P. 103–113. https://doi.org/10.1016/j.memsci.2014.09.040
- Tantekin-Ersolmaz Ş. B., Atalay-Oral Ç., Tatlıer M., Erdem-Şenatalar A., Schoeman B., Sterte J. Effect of zeolite particle size on the performance of polymer–zeolite mixed matrix membranes // J. Membr. Sci. 2000. V. 175. N 2. P. 285–288. https://doi.org/10.1016/S0376-7388(00)00423-3
- Mushardt H., Müller M., Shishatskiy S., Wind J., Brinkmann T. Detailed investigation of separation performance of a MMM for removal of higher hydrocarbons under varying operating conditions // Membr. 2016. V. 6. N 1. P. 16–29. https://doi.org/10.3390/membranes6010016
- Goh T. K., Guntari S. N., Ochs C. J., Blencowe A., Mertz D., Connal L. A. Nanoengineered films via surface-confined continuous assembly of polymers // Small. 2011. V. 7. P. 2863–2867. https://doi.org/10.1002/smll.201101368
- Liu J., Zhang S., Jiang D. E., Doherty C. M., Hill A. J., Cheng C., H. Bum Park, Lin H. Highly polar but amorphous polymers with robust membrane CO2/N2 separation performance // Joule. 2019. V. 3. P. 1881–1894. https://doi.org/10.1016/j.joule.2019.07.003
- Borisov I. L., Grushevenko E. A., Anokhina T. S., Bakhtin D. S., Levin I. S., Bondarenko G. N., Volkov V. V., Volkov A. V. Influence of side chains assembly on the structure and transport properties of comb-like polysiloxanes in hydrocarbon separation // Mater. Today Chem. 2021. V. 22 Article 100598. doi.org/10.1016/j.mtchem.2021.100598
- Grushevenko E., Rokhmanka T., Borisov I., Volkov A., Bazhenov S. Effect of OH-group introduction on gas and liquid separation properties of polydecylmethylsiloxane // Polymers. 2023. V. 15 (3). P. 723. https://www.mdpi.com/2073-4360/15/3/723
- Sokolov S. E., Grushevenko E. A., Volkov V. V., Borisov I. L., Markova S. Yu., Shalygin M. G., Volkov A. V. A Composite membrane based on polydecylmethylsiloxane for the separation of hydrocarbons mixtures at reduced temperatures // Membr. Membr. Techn. 2022. V. 4. P. 377–384. https://doi.org/10.1134/S2517751622060099
- Sokolov S. E., Grushevenko E. A., Borisov I. L., Volkov V. V. Sorption, diffusion and side-chain melting/crystallization in comb-like poly(n-tetradecyl methyl siloxane) facilitated by condensable hydrocarbon gases // Polymer. 2024. V. 308. Article 127409. https://doi.org/10.1016/j.polymer.2024.127409
- Grushevenko E. A., Rokhmanka T. N., Polyakova M. Yu., Golubev G. S., Borisov I. L. Preparation of composite membranes from polydecylmethylsiloxane and polymethylpentafluoropropylacrylatesiloxane copolymer: Effect of the conversion degree and polymer solution rheology // Membr. Membr. Techn. 2024. V. 6. N 4. P. 234–247. https://doi.org/10.1134/S2517751624600432
- Grushevenko E. A., Rokhmanka T. N., Borisov I. L., Volkov A. V., Bazhenov S. D. Effect of OH-group introduction on gas and liquid separation properties of polydecylmethylsiloxane // Polymers. 2023. V. 15. N 3. Article 723. https://doi.org/10.3390/polym15030723
- Medentseva E. I., Khrychikova A. P., Bermesheva E. V., Borisov I. L., Petukhov D. I., Karpov G. O., Morontsev A. A., Nesterova O. V., Bermeshev M. V. CO2-separation performance of vinyl-addition polynorbornenes with ester functionalities // J. Membr. Sci. 2024. V. 705. Article 122916. https://doi.org/10.1016/j.memsci.2024.122916
- Zotkin M. A., Alentiev D. A., Borisov R. S., Kozlova A. A., Borisov I. L., Shalygin M. G., Bermeshev M. V. Polynorbornenes with carbocyclic substituents: A perspective approach to highly permeable gas separation membranes // J. Membr. Sci. 2024. V. 702. Article 122786. https://doi.org/10.1016/j.memsci.2024.122786
- Zotkin M. A., Alentiev D. A., Shorunov S. V., Sokolov S. E., Gavrilova N. N., Bermeshev M. V. Microporous polynorbornenes bearing carbocyclic substituents: Structure-property study // Polymer. 2023. V. 269. Article 125732. https://doi.org/10.1016/j.polymer.2023.125732
- Зоткин М. А., Алентьев Д. А., Соколов С. Е., Бермешев М. В. Исследование сорбции газов в аддитивном полинорборнене с норборнильными заместителями // ЖПХ. 2023. T. 96. № 12. C. 958–964
- Wozniak A. I., Bermesheva E. V., Borisov I. L., Volkov A. V., Petukhov D. I., Gavrilova N. N., Shantarovich V. P., Asachenko A. F., Topchiy M. A., Finkelshtein E. Sh., Bermeshev M. V. Switching on/switching off solubility controlled permeation of hydrocarbons through glassy polynorbornenes by the length of side alkyl groups // J. Membr. Sci. 2022. V. 641. Article 119848. https://doi.org/10.1016/j.memsci.2021.119848
- Karpov G. O., Bermeshev M. V., Borisov I. L., Sterlin S. R., Tyutyunov A. A., Yevlampieva N. P., Bulgakov B. A., Volkov V. V., Finkelshtein E. S. Metathesis-type poly-exo-tricyclononenes with fluoroorganic side substituents: Synthesis and gas-transport properties // Polymer. 2018. V. 153. P. 626–636. https://doi.org/10.1016/j.polymer.2018.08.055
- Robeson L. M. The upper bound revisited // J. Membr. Sci. 2008. V. 320. N 1–2. P. 390–400. https://doi.org/10.1016/j.memsci.2008.04.030
- Comesaña-Gándara B., Chen J., Bezzu C. G., Carta M., Rose I., Ferrari M.-C., Esposito E., Fuoco A., Jansen J. C., McKeown N. B. Redefining the Robeson upper bounds for CO2/CH4 and CO2/N2 separations using a series of ultrapermeable benzotriptycene-based polymers of intrinsic microporosity // Energy Environ. Sci. 2019. V. 12. P. 2733–2740. https://doi.org/10.1039/C9EE01384A
- Li G., Kujawski W., Válek R., Koter S. A review — the development of hollow fibre membranes for gas separation processes // Int. J. Greenh. Gas Control. 2021. V. 195. Article 103195. https://doi.org/10.1016/j.ijggc.2020.103195
- Lai W. H., Hong C. Y., Tseng H. H., Wey M. Y. Fabrication of waterproof gas separation membrane from plastic waste for CO2 separation // Environ. Res. 2021. V. 195. Article 110760. https://doi.org/10.1016/j.envres.2021.110760
- Shovon Sh. M., Akash F. A., Monir M. U., Ahmed M. T., Aziz A. A. Membrane technology for CO2 removal from CO2-rich natural gas // Advances in natural gas: Formation, processing, and applications. V. 2: Natural Gas Sweetening. 2024. P. 487–508. https://www.sciencedirect.com/science/article/pii/B9780443192173000180#bib92
Дополнительные файлы


