开放存取 开放存取  受限制的访问 ##reader.subscriptionAccessGranted##  受限制的访问 订阅存取

卷 98, 编号 11-12 (2025)

封面

完整期次

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

Articles

MEMBRANNOE GAZORAZDELENIE DLYa IZVLEChENIYa KISLYKh KOMPONENTOV IZ GAZOVYKh SRED: SOVREMENNOE SOSTOYaNIE I PERSPEKTIVY (obzor)

Zhebratkina-Eydel'man A., Grushevenko E., Nizameev I., Borisov I., Volkov A., Bazhenov S.

摘要

В обзоре рассмотрена проблема очистки газовых потоков от кислых (CO2, H2S, SOx, NOx) газов, обоснована целесообразность применения технологии мембранного газоразделения. Представлен анализ рынка газоразделительных мембран и дан критический анализ существующих разработок в области мембранного материаловедения и коммерческих мембранных решений для выделения кислых газов. Обсуждены потенциальные области применения перспективных мембранных материалов. Описаны направления развития мембранного удаления кислых компонентов из газовых сред, обозначены нерешенные проблемы и возможности для будущих исследований в этой области.

Russian Journal of Applied Chemistry. 2025;98(11-12):544-572
pages 544-572 views

PERSPEKTIVY RAZVITIYa ENERGETIKI. SRAVNITEL'NYY ANALIZ EFFEKTIVNOSTI TERMODINAMIChESKIKh I ELEKTROKhIMIChESKIKh ENERGOUSTANOVOK V EPOKhU ENERGETIChESKOGO PEREKhODA (obzor)

Efremov A., Yashchenko S., Mirgorodskiy L., Smal' M., Oganesyan G., Sokolov T., Mirgorodskiy S., Shein G.

摘要

В обзоре рассматриваются методологические основы определения коэффициента полезного действия (КПД) энергетических установок и предлагается классификация КПД с учетом характера потерь, преобразуемой энергии, теоретического предела эффективности и области применения. Особое внимание уделено выбору энергетической базы для расчета КПД — от традиционно используемой низшей теплоты сгорания до более фундаментальных характеристик, таких как химическая энергия и эксepгия. На основе методики В. С. Степанова выполнены расчеты теплотворной способности, химической энергии и эксepгии для метана и водорода, а также произведен сопоставительный анализ электрического КПД газотурбинной установки и топливной ячейки. Установлено, что применение эксергетического подхода позволяет более объективно оценивать эффективность энергетических технологий различной природы. Показана необходимость внимательного подхода к выбору расчетной энергетической базы для корректного анализа, инженерных решений и сравнения систем. Отдельное внимание уделено анализу потенциала повышения КПД топливных ячеек и их преимуществ перед традиционными термодинамическими установками. Обозначены тренды развития новых критериев оценки эффективности энергетических процессов, включая специфические свойства таких элементов, как горелочные устройства и камеры сгорания.

Russian Journal of Applied Chemistry. 2025;98(11-12):573-590
pages 573-590 views

Compositional Materials

RAZRABOTKA SOSTAVA UGLEROD-POLIMERNYKh POKRYTIY NA ALYuMINIEVOY FOL'GE

Mikhlyaev A., Egorova N., Kuz'mina E., Kolosnitsyn V.

摘要

Изучено влияние состава углерод-полимерных защитных покрытий на адгезию к алюминиевой фольге, эластичность и набухаемость в электролитных системах линий-ионных и линий-серных аккумуляторов. В качестве полимерных связующих были изучены бутилстиральный каучук, карбоксиметилцеллюлоза, акриловый латекс и их смесь. В качестве токопроводящей добавки использовали техническую сажгу П803 (ГОСТ 7885–86), а дисперсионной среды — дистиллированную воду. Установлено, что наилучшими свойствами (электропроводностью, высокой адгезией к алюминиевой фольге, эластичностью и низкой пористостью) обладают углерод-полимерные покрытия, включающие 80% сажи П803, 17.5% акрилового латекса и 2.5% карбоксиметилцеллюлозы.

Russian Journal of Applied Chemistry. 2025;98(11-12):591-599
pages 591-599 views

Водородные технологии

FORMIROVANIE I ISSLEDOVANIE VODOROD-AKKUMULIRUYuShchIKh KOMPOZITOV TiFe S ZhELEZO-GRAFENOVYM KATALIZATOROM DLYa KhRANENIYa VODORODA

Arbuzov A., Shamov I., Sanin V., Lototskiy M., Tarasov B.

摘要

Исследовано формирование композитов TiFe с железо-графеновым катализатором механохимической обработкой в атмосфере водорода и определены их водородсорбционные характеристики. Показано, что добавка железо-графенового катализатора к сплавам Ti с Fe увеличивает скорость процесса гидрирования и обеспечивает высокую обратимую водородосикость композита. На основе водород-аккумулирующего композита изготовлен опытный образец аккумулятора водорода и установлены его эксплуатационные характеристики.

Russian Journal of Applied Chemistry. 2025;98(11-12):600-608
pages 600-608 views

Неорганический синтез и технология неорганических производств

SRAVNITEL'NOE ISSLEDOVANIE SVOYSTV KSEROGELEY, NANOPOROShKOV I KERAMIChESKIKh MATERIALOV V SISTEME CeO2–Dy2O3, POLUChENNYKh METODAMI SOVMESTNOGO OSAZhDENIYa V LABORATORNOY USTANOVKE I SOOSAZhDENIYa V MIKROREAKTORE SO VSTREChNYMI ZAKRUChENNYMI POTOKAMI

Kalinina M., Makusheva I., Myakin S., Khamova T., Sokolov A., Farafonov N., Loktyushkin N., Abiev R.

摘要

Двумя методами жидкофазного синтеза — методом совместного осаждения гидроксидов в лабораторной установке с магнитной мешалкой и методом быстрого совместного осаждения гидроксидов в микрореакторе со встречными закрученными потоками синтезированы высокодисперсные метопористые порошки состава (CeO2)1-x(Dy2O3)x (x = 0.05, 0.10, 0.15. 0.20), обладающие удельным объемом пор 0.022–0.084 см3·г−1 и удельной площадью поверхности 23.71–66.32 м2·г−1. На их основе получены керамические напоматериалы заданного состава, представляющие собой кубические твердые растворы типа флюорита с ОКР ~ 44–76 нм, с открытой пористостью в интервале 3–14%, высокими значениями кажущейся плотности 5.87–7.24 г·см−3. Выявлено существенное влияние условий проведения синтеза на физико-химические свойства керамических электролитных материалов. Показано, что спекающая добавка ZnO для керамики, полученной двумя разными методами синтеза, влияет на открытую пористость и плотность по-разному: в случае использования метода синтеза в микрореакторе со встречными закрученными потоками (расход 1.5 л·мин−1) открытая пористость уменьшилась в 2–5 раз, плотность увеличилась незначительно. Однако для образцов, синтезированных методом соосаждения гидроксидов в лабораторной установке, пористость снизилась в 2 раза, что доказывает избирательное влияние спекающих добавок. По своим физико-химическим свойствам (плотность, пористость, коэффициент термического расширения) полученные керамические материалы перспективны в качестве твердооксидных электролитов среднетемпературных топливных элементов.

Russian Journal of Applied Chemistry. 2025;98(11-12):609-620
pages 609-620 views

Высокомолекулярные соединения и материалы на их основе

OTsENKA KOAGULIRUYuShchEGO DEYSTVIYa SUL'FAMINOVOY KISLOTY V PROTsESSAKh VYDELENIYa BUTADIEN-STIROL'NOGO KAUChUKA IZ LATEKSA

Nikulin S., Churilina E., Sedykh V., Pisareva I., Nikulina N.

摘要

Проведена оценка коагулирующей способности сульфаминовой кислоты в процессе выделения из латеков бутадиен-стирольного каучука. Исследовано влияние на полноту выделения каучука таких факторов, как температура, расход коагулирующего и подкисляющего агентов. Оптимальные условия выделения каучука из латекса с выходом полимера 98% предусматривают расход коагулянта 40 кг∙т–1 при температуре 1–2°C. Отмечена особенность поведения сульфаминовой кислоты, заключающаяся в том, что при 60°C полнота выделения каучука из латекса не достигается без дозревания системы после введения в нее подкисляющего агента. Это связано с гидролизом термически неустойчивой сульфаминовой кислоты. Вулканизаты, полученные на основе выделенного каучука, по своим основным показателям соответствуют требованиям ГОСТ 15627–2019.

Russian Journal of Applied Chemistry. 2025;98(11-12):621-626
pages 621-626 views

Катализ

GIDRIROVANIE SO2 S ISPOL'ZOVANIEM Cu/Zn-KATALIZATOROV NA OSNOVE PORISTYKh AROMATIChESKIKh KARKASOV

Makeeva D., Maksimov A.

摘要

Углекислый газ представляет собой перспективный реагент для синтеза широкого круга ценных химических продуктов, в частности метанола. В настоящей работе впервые на основе как немодифицированных, так и модифицированных аминогруппами пористых ароматических каркасов синтезированы Cu/Zn-катализаторы для гидрирования CO2 в метанол. Рассмотрена взаимосвязь текстурных характеристик носителя и формирующихся в его структуре наночастиц активной фазы. Активность синтезированных в работе катализаторов исследована при 250°C и 40 атм (CO2/H2 = 1:3). Определен оптимальный состав катализатора, изучено влияние природы растворителя на его активность.

Russian Journal of Applied Chemistry. 2025;98(11-12):627-637
pages 627-637 views

PRIMENENIE PEREDOVYKh OKISLITEL'NYKh PROTsESSOV DLYa OChISTKI STOChNYKh VOD OT ORGANIChESKIKh ZAGRYaZNITELEY

Skvortsova L., Matveeva M., Makarova V., Kryukova O., Dychko K.

摘要

Исследована возможность очистки воды от фенола и ацетона с применением железосодержащих металлокерамических композитов на основе нитрида кремния, модифицированных полупроводниковыми соединениями, в условиях облучения УФ/видимым светом и озонирования. Композиты получены при азотировании ферросилиция в отсутствие и с добавкой природного минерала шунгита (для введения карбида кремния) в режиме горения. Для введения в керамическую матрицу композитов полупроводниковых фаз оксида железа(III) и нитрида углерода использовали мочевину. Установлен фазовый состав, изучена морфология и оптические свойства композитов. Проведена оценка адсорбционной и фотокаталитической активности композитов в отсутствие и с добавкой пероксида водорода при облучении УФ, видимым светом (процесс Фентона) и озонировании. Установлена высокая степень деградации фенола (~100%) с применением модифицированных композитов с добавкой пероксида водорода при облучении видимым светом. Показана устойчивость фотокатализаторов в восьми повторных циклах. Наиболее эффективным для окислительной деструкции ацетона (100%) в воде является озонирование, в том числе при облучении видимым светом. Исследованы продукты деградации ацетона и фенола методом ГХ и ГХ-МС.

Russian Journal of Applied Chemistry. 2025;98(11-12):638-648
pages 638-648 views

GIDRODEKhLORIROVANIE 1,4-DIKhLORBENZOLA V SISTEMAKh, SODERZhAShchIKh BENZOTIOFEN, NAFTALIN I 1-KhLORNAFTALIN, V PRISUTSTVII SUL'FIDNYKh NENANESENNYKh KATALIZATOROV, SINTEZIRUEMYKh IN SITU

Dzhabarov E., Petrukhina N., Zakharyan E.

摘要

С целью изучения каталитической активности в конкурирующих процессах гидрогенолиза бикомпонентных систем (1,4-дихлорбензол/бензотиофен, 1,4-дихлорбензол/нафталин, 1,4-дихлорбензол/1-хлорнафталин) синтезированы моно- и биметаллические системы на основе ненанесенных сульфидов переходных металлов (Ni, W, Co, Mo, Fe). Наибольшие степени дехлорирования и обессеривания в параллельном процессе гидродехлорирования 1,4-дихлорбензола и гидрообессеривания бензотиофена достигаются в присутствии биметаллических NiWS, NiMoS и CoWS, в параллельном процессе гидродехлорирования 1,4-дихлорбензола и гидрирования нафталина — в присутствии биметаллических систем NiWS, NiMoS и FeMoS, в параллельном процессе гидродехлорирования и гидрирования 1,4-дихлорбензола и 1-хлориафталина — в присутствии биметаллических систем NiWS, CoMoS и NiMoS, что говорит о высокой активности именно NiMoS и NiWS среди всех исследуемых систем. Исследование морфологии и фазового состава NiWS, как наиболее активного катализатора, полученного in situ из маслорастворимых прекурсоров в реакционной среде, посредством рентгеновской фотоэлектронной спектроскопии и просвечивающей электронной микроскопии указывать на наличие на поверхности катализаторов фазы дисульфида вольфрама, сульфида никеля и смешанной фазы NiWS. Показано увеличение скорости реакции гидрообессеривания в присутствии NiWS и хлорсодержащего соединения. Взаимное ингибирование процессов дехлорирования и гидрирования наблюдается в двухкомпонентной системе, содержащей 1,4-дихлорбензол и нафталин и 1,4-дихлорбензол и 1-хлориафталин. Установлено, что в жидком продукте каталитической переработки смеси поливинилхлорида и полиспирола в присутствии in situ синтезированного катализатора NiWS содержится до 33% ароматических (в том числе хлорароматических ~10%) компонентов, в системе также установлено присутствие до 6% хлоралканов.

Russian Journal of Applied Chemistry. 2025;98(11-12):649-664
pages 649-664 views

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».