Study of Secular Perturbations in the Restricted Three-Body Problem of Variable Masses Using Computer Algebra

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A nonstationary restricted three-body problem for variable masses is considered taking into account the reactive forces arising due to anisotropic variation of masses of the bodies. It is assumed that the bodies are spherically symmetric and interact in accordance with Newton’s law of gravitation. On the basis of the equations of motion of the bodies in the relative system of coordinates, differential equations of aperiodic motion along quasi-conic sections in terms of osculating elements are derived. Equations determining the secular perturbations of the orbital elements are derived in the case of small eccentricities and inclinations of orbits. All symbolic computations are performed using Wolfram Mathematica.

About the authors

A. T. Ibraimova

Al-Farabi Kazakh National University; Fesenkov Astrophysical Institute

Email: ibraimova@aphi.kz
050040, Almaty, Kazakhstan; 050020, Almaty, Kazakhstan

M. Dzh. Minglibayev

Al-Farabi Kazakh National University; Fesenkov Astrophysical Institute

Email: minglibayev@gmail.com
050040, Almaty, Kazakhstan; 050020, Almaty, Kazakhstan

A. N. Prokopenya


Warsaw University of Life Sciences

Author for correspondence.
Email: alexander_prokopenya@sggw.edu.pl
02-776, Warsaw, Poland

References

  1. Omarov T.B. (Ed.) Non-Stationary Dynamical Problems in Astronomy. N.Y.: Nova Sci. Publ., 2002.
  2. Bekov A.A., Omarov T.B. The theory of orbits in non-stationary stellar systems // Astron. Astrophys. Transact. 2013. V. 22. № 2. P. 145–153.
  3. Черепащук А.М. Тесные двойные звезды. Ч. II. М.: Физматлит, 2013. 572 с.
  4. Eggleton P. Evolutionary processes in binary and multiple stars. Cambridge Univ. Press, 2006. 332 p.
  5. Luk’yanov L.G. Dynamical evolution of stellar orbits in close binary systems with conservative mass transfer // Astron. Rep. 2008. V. 52. № 8. P. 680–693.
  6. Минглибаев М.Дж. Динамика гравитирующих тел с переменными массами и размерами. LAMBERT Acad. Publ., 2012. 229 с.
  7. Прокопеня А.Н., Минглибаев М.Дж., Маемерова Г.М. Символьные вычисления в исследованиях проблемы трех тел с переменными массами // Программирование. 2014. Т. 40. № 2. С. 51–59.
  8. Minglibayev M.Zh., Mayemerova G.M. Evolution of the orbital-plane orientations in the two-protoplanet three-body problem with variable masses // Astron. Rep. 2014. V. 58. № 9. P. 667–677.
  9. Minglibayev M.Zh., Prokopenya A.N., Mayemerova G.M., Imanova Zh.U. Three-body problem with variable masses that change anisotropically at different rates // Math. Comp. Sci. 2017. V. 11. № 3–4. P. 383–391.
  10. Прокопеня А.Н., Минглибаев М.Дж., Шомшекова С.А. Применение компьютерной алгебры в исследованиях двухпланетной задачи трех тел с переменными массами // Программирование. 2019. Т. 45. № 2. С. 58–65.
  11. Minglibayev M., Prokopenya A., Shomshekova S. Computing perturbations in the two-planetary three-body problem with masses varying non-isotropically at different rates // Math. Comp. Sci. 2020. V. 14. № 2. P. 241–251.
  12. Wolfram S. An Elementary Introduction to the Wolfram Language. Champaign, IL: Wolfram Media, 2015. 324 p.
  13. Прокопеня А.Н. Решение физических задач с использованием системы Mathematica. Брест: БГТУ, 2005. 260 с.
  14. Minglibayev M.Zh., Omarov Ch.T., Ibraimova A.T. New forms of the perturbed motion equation // Rep. Nation. Acad. Sci. Republ. Kazakhstan. 2020. V. 2(330). P. 5–13.
  15. Мещерский И.В. Работы по механике тел переменной массы. М.: Гос. изд-во тех.-теор. лит-ры, 1952. 281 с.
  16. Дубошин Г.Н. Небесная механика. Основные задачи и методы. М.: Наука, 1975. 799 с.
  17. Рой А.Э. Движение по орбитам. М.: Мир, 1981. 544 с.
  18. Себехей В. Теория орбит: ограниченная задача трех тел. М.: Наука, 1982. 656 с.
  19. Brouwer D., Clemence G.M. Methods of Celestial Mechanics. N.Y.: Acad. Press, 1961. 601 p.
  20. Шарлье К. Небесная механика. М.: Наука, 1966. 628 с.
  21. Murray C.D., Dermott S.F. Solar system dynamics. Cambridge University Press, New York, 1999. 592 p.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 А.Т. Ибраимова, М.Дж. Минглибаев, А.Н. Прокопеня

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».