Приближение непрерывных функций с помощью классических синков и значений операторов Cλ

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Рассмотрены свойства синк-приближений. Используемые ранее классические синк-аппроксимации давали плохое приближение, а новый оператор, обобщающий синк-аппроксимации, справляется с приближением этой функции лучше. Приведен график численной реализации эксперимента. Библ. 22. Фиг 2.

About the authors

В. Н. Пасечник

Саратовский национальный исследовательский государственный университет им. Н. Г. Чернышевского

Author for correspondence.
Email: kas.sy@yandex.ru
Russian Federation, 410012 Саратов, ул. Астраханская, 83

References

  1. Кашин Б. С., Саакян А. А. Ортогональные ряды. М.: Изд-во АФЦ, 1999.
  2. Новиков И. Я., Стечкин С. Б. Основы теории всплесков// УМН. 1998. С. 53–128.
  3. Stenger F. Numerical Methods based on Sinc and analytic functions // Springer Ser. Comput. Math. 20 Springer, 1993.
  4. Добеши И. Десять лекций по вейвлетам., Ижевск: Регулярная и хаотическая динамика, 2001.
  5. Livne O. E., Brandt A. E. MuST: The multilevel sine transform // SIAM J. Sci. Comput. 2011. V. 38. N 4. P. 1726–1738.
  6. Marwa M. Tharwat Sinc approzimation of eigenvalues of Sturm – Liouville problems with a Gaussian multiplier Calcolo: a quarterly on numerical analysis and theory of computation. 2014. V. 51. N. 3. P. 465–484.
  7. Kivinukk A. Tamberg G, Interpolating generalized Shannon sampling operators, their norms and approzimation properties // Sampl. Theory Signal Image Process. 2009. V. 8. N 1. P. 77–95.
  8. Trynin A. Yu., Sklyarov V. P. Error of sine approrimation of analytic functions on an interval // Sampling Theory in Signal and Tmage Processing. 2008. V. 7. N 34. P. 263–270.
  9. Sklyarov V. P. On the best uniform sink-approximation on a finite interval // East J. Approximat. 2008. V. 14. N 2. P. 183–192.
  10. Mohsen A., El-Gamel M. A Sine-Collocation method for the linear Fredholm integro-differential equations // Z. angew. Matth. Phys. 2006. P. 1–11, https://doi.org/10.1007/s00033–006–5124–5.
  11. Трынин А. Ю. О расходимости синк-приближений всюду на (0, π) // Алгебра и анализ. 2010. Т. 22. N 4. С. 232–256.
  12. Трынин А. Ю. О необходимых и достаточных условиях сходимости синк-аппроксимаций // Алгебра и анализ. 2015. Т. 27. № 5. С. 170–194.
  13. Трынии А. Ю. Приближение непрерывных на отрезке функций с помощью линейных комбинаций синков // Изв. высшю уч. заведений. Математика. 2016. № 3. С. 72–81.
  14. Трынин А. Ю. Обобщение теоремы отсчетов Уиттекера–Котельникова–Шеннона для непрерывных функций на отрезке // Матем. сб. 2009. С. 61–108.
  15. Трынин А. Ю. Об операторах интерполирования по решениям задачи Коши и многочленах Лагранжа–Якоби // Изв. РАН. Сер. матем. 2011. Т. 75. № 6. С. 129–162.
  16. Kramer H. P. A generalized sampling theorem // J. Math. Phus. 1959. V. 38. P. 68–72.
  17. Натансон Г. И. Об одном интерполяционном процессе // Учен. записки Лепинград, пед. ин-та. 1958. Т. 166. С. 213–219.
  18. Трынин А. Ю. Об отсутствии устойчивости интерполирования по собственным функция задачи Штурма–Лиувилля// Изв. высш. уч-ых заведений. Математика. 2000. Т. 9. № 460. С. 60–73.
  19. Трынин А. Ю. Об одной обратной узловой задаче для оператора Штурма–Лиувилля // Уфимск. матем. журн. 2013. Т. 5. № 4. С. 116–129.
  20. Трынии А. Ю. О расходимости интерполяционных процессов Лагранжа по собственным функциям Задачи Штурма–Лиувилля // Изв. высш. уч-ых заведений. Математика. 2010. № 11. С. 74–85.
  21. Трынин А. Ю. Оценки функций Лебега и формула Неваи для sinc-приближений непрерывных функций на отрезке// Сиб. матем. журн. 2007. Т. 48. № 5. С. 1155–1166.
  22. Трынин А. Ю. Критерий равномерной сходимости sinc-приближений на отрезке // Изв. высш. уч-ых заведений. Математика. 2008. № 6. С. 66–78.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».