Uniqueness of a solution to the Lavrent’ev integral equation in n-dimensional space

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We study the multidimensional analogue of the Lavrent’ev integral equation to which an inverse problem of acoustic sounding is reduced. Conditions under which the studied equation has a unique solution are established. Results of numerical experiments concerning the solution of the inverse acoustic problem with variously located sets of sources and detectors are presented.

Full Text

Restricted Access

About the authors

M. M. Kokurin

Mari State University

Author for correspondence.
Email: kokurin@nextmail.ru
Russian Federation, Lenin Sqr., 1, Yoshkar-Ola, Republic of Mari El, 424001

V. V. Klyuchev

Mari State University

Email: kokurin@nextmail.ru
Russian Federation, Lenin Sqr., 1, Yoshkar-Ola, Republic of Mari El, 424001

A. V. Gavrilova

Mari State University

Email: kokurin@nextmail.ru
Russian Federation, Lenin Sqr., 1, Yoshkar-Ola, Republic of Mari El, 424001

References

  1. Лаврентьев М.М. Об одной обратной задаче для волнового уравнения // Докл. АН СССР. 1964. Т. 157. 3. С. 520–521.
  2. Лаврентьев М.М. Об одном классе обратных задач для дифференциальных уравнений // Докл. АН СССР. 1965. Т. 160. 1. С. 32–35.
  3. Бакушинский А.Б., Козлов А.И., Кокурин М.Ю. Об одной обратной задаче для трехмерного волнового уравнения // Ж. вычисл. матем. и матем. физ. 2003. Т. 47. 3. С. 1201–1209.
  4. Вайнберг М.М. Асимптотические методы в уравнениях математической физики. М.: Изд-во МГУ. 1982.
  5. Романов В.Г. О гладкости фундаментального решения для гиперболического уравнения второго порядка // Сиб. матем. журн. 2009. Т. 50. 4. С. 883–889.
  6. Козлов А.И., Кокурин М.Ю. Об интегральных уравнениях типа М.М.Лаврентьева в коэффициентных обратных задачах для волновых уравнений // Ж. вычисл. матем. и матем. физ. 2021. Т. 61. 9. С. 1492–1507.
  7. Klibanov M., Li J., Zhang W. Linear Lavrent’ev integral equation for the numerical solution of a nonlinear coefficient inverse problem // SIAM J. Appl. Math. 2021. V. 81. 5. P. 1954–1978.
  8. Кокурин М.Ю. Полнота асимметричных произведений гармонических функций и единственность решения уравнения М.М. Лаврентьева в обратных задачах волнового зондирования // Изв. РАН. Сер. матем. 2022. Т. 86. 6. С. 101–122.
  9. Лаврентьев М.М., Романов В.Г., Шишатский С.П. Некорректные задачи математической физики и анализа. М.: Наука, 1980.
  10. Рамм А.Г. Многомерные обратные задачи рассеяния. М.: Мир, 1994.
  11. Бухгейм А.Л., Дятлов Г.В., Кардаков В.Б., Танцерев Е.В. Единственность в одной обратной задаче для системы уравнений упругости // Сиб. матем. журн. 2004. Т. 45. 4. С. 747–757.
  12. Кокурин М.Ю., Паймеров С.К. Об обратной коэффициентной задаче для волнового уравнения в ограниченной области // Ж. вычисл. матем. и матем. физ. 2008. Т. 48. 1. С. 117–128.
  13. Kokurin M.Yu. On a multidimensional integral equation with data supported by low-dimensional analytic manifolds // J. of Inverse and Ill-Posed Probl. 2013. V. 21. 1. P. 125–140.
  14. Кокурин М.Ю. О полноте произведений гармонических функций и единственности решения обратной задачи акустического зондирования // Матем. заметки. 2008. Т. 21. 1. С. 125–140.
  15. Кокурин М.Ю. О полноте произведений решений уравнения Гельмгольца // Изв. вузов. Математика. 2020. 6. С. 30–35.
  16. Кокурин М.Ю. Полнота асимметричных произведений решений эллиптического уравнения второго порядка и единственность решения обратной задачи для волнового уравнения // Дифференц. ур-ния. 2021. Т. 57. 2. С. 255–264.
  17. Кокурин М.Ю., Ключев В.В. Условия единственности и численная аппроксимация решения интегрального уравнения М.М. Лаврентьева // Сиб. журн. вычисл. матем. 2022. Т. 25. 4. С. 441–458.
  18. Бакушинский А.Б., Леонов А.С. К численному решению обратной многочастотной задачи скалярной акустики // Ж. вычисл. матем. и матем. физ. 2020. Т. 60. 6. С. 1013–1026.
  19. Bakushinsky A.B., Leonov A.S. Multifrequency inverse problem of scalar acoustics: remarks on nonuniqueness and solution algorithm // J. of Math. Sci. 2023. V. 274. 4. P. 460–474.
  20. Кудрявцев Л.Д. Курс математического анализа (в 3-х томах). Том 2. М.: Дрофа, 20014.
  21. Диткин В.А., Прудников А.П. Интегральные преобразования и операционное исчисление. М.: ГИФМЛ, 1961.
  22. Лаврентьев М.А., Шабат Б.В. Методы теории функций комплексного переменного. М.: Наука, 1965.
  23. Киприянов И.А. Сингулярные эллиптические краевые задачи. М.: Физматлит, 1997.
  24. Стейн И., Вейс Г. Введение в гармонический анализ на евклидовых пространствах. М.: Мир, 1974.
  25. Ахиезер Н.И. Лекции по теории аппроксимации. М.: Наука, 1965.
  26. Богачёв В.И., Смолянов О.Г. Действительный и функциональный анализ: университетский курс. М. – Ижевск: НИЦ “Регулярная и хаотическая динамика”, 2011.
  27. Маргулис А.С. К теории потенциала в классах L p (Ω) // Изв. вузов. Математика. 1982. Т. 236. 1. С. 33–41.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Example 7 from Table 2. Graphs of the function (right) and the corresponding approximate solution (left) for .

Download (461KB)
3. Fig. 2. Example 9 from Table 2. Graphs of the function (right) and the corresponding approximate solution (left) for .

Download (465KB)
4. Fig. 3. Example 9 from Table 2. Graphs of the function (on the right) and the corresponding approximate solution (on the left) for .

Download (477KB)
5. Fig. 4. Example 11 from Table 2. Graphs of the function (right) and the corresponding approximate solution (left) for .

Download (462KB)

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».