ESTIMATES FOR SOLUTIONS OF A BIOLOGICAL MODEL WITH INFINITE DISTRIBUTED DELAY

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A model of competition between several microorganism species described by a system of nonlinear differential equations with infinite distributed delay is considered. The case of asymptotic stability of the equilibrium point corresponding to the survival of only one species and the extinction of all others is studied. The conditions for the initial numbers of species and the initial concentration of the nutrient at which the system reaches an equilibrium state are specified, and estimates of the stabilization rate are established. The results are obtained using the Lyapunov–Krasovskii functional.

About the authors

T. K Iskakov

Novosibirsk State University; Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences

Email: istima92@mail.ru
Novosibirsk, Russia

M. A Skvortsova

Novosibirsk State University; Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences

Email: sm-18-nsu@yandex.ru
Novosibirsk, Russia

References

  1. Скворцова М.А., Ыскак Т. (Искаков Т.К.) Оценки решений дифференциальных уравнений с распределенным запаздыванием, описывающих конкуренцию нескольких видов микроорганизмов // Сиб. журн. индустриал. матем. 2022. Т. 25. № 4. С. 193-205.
  2. Wolkowicz G.S.K., Xia H., Wu J. Global dynamics of a chemostat competition model with distributed delay // J. Math. Biology. 1999. V. 38. P. 285-316.
  3. Wolkowicz G.S.K., Xia H. Global asymptotic behavior of a chemostat model with discrete delays // SIAM J. Appl. Math. 1997. V. 57.№4. P. 1019-1043.
  4. MacDonald N. Time delays in chemostat models // in: Microbial Population Dynamics, M.J. Bazin, ed., CRC Press, Florida. 1982. P 33-53.
  5. Демиденко Г.В., Матвеева И.И. Асимптотические свойства решений дифференциальных уравнений с запаздывающим аргументом // Вестник НГУ. Сер.: матем., мех., информатика. 2005. Т. 5. № 3. С. 20-28.
  6. Демиденко Г.В., Матвеева И.И. Устойчивость решений дифференциальных уравнений с запаздывающим аргументом и периодическими коэффициентами в линейных членах // Сиб. матем. журн. 2007. Т. 48. № 5. С. 1025-1040.
  7. Демиденко Г.В., Матвеева И.И. Об оценках решений систем дифференциальных уравнений нейтрального типа с периодическими коэффициентами // Сиб. матем. журн. 2014. Т. 55. № 5. С. 1059-1077.
  8. Матвеева И.И. Об экспоненциальной устойчивости решений периодических систем нейтрального типа // Сиб. матем. журн. 2017. Т. 58. № 2. С. 344-352.
  9. Демиденко Г.В., Матвеева И.И., Скворцова М.А. Оценки решений дифференциальных уравнений нейтрального типа с периодическими коэффициентами в линейных членах // Сиб. матем. журн. 2019. Т. 60. № 5. С. 1063-1079.
  10. Матвеева И.И. Оценки экспоненциального убывания решений одного класса нелинейных систем нейтрального типа с периодическими коэффициентами // Ж. вычисл. матем. и матем. физ. 2020. Т. 60. № 4. С. 612-620.
  11. Ыскак Т. (Искаков Т.К.) Оценки решений одного класса систем нелинейных дифференциальных уравнений с распределенным запаздыванием // Сиб. электрон. матем. изв. 2020. Т. 17. С. 2204-2215.
  12. Ыскак Т. (Искаков Т.К.) Устойчивость решений систем нелинейных дифференциальных уравнений с бесконечным распределенным запаздыванием // Челябинский физ.-матем. журн. 2023. Т. 8. № 4. С. 542-552.
  13. Demidenko G.V., Matveeva I.I. The second Lyapunov method for time-delay systems // Functional Differential Equations and Applications (Editors: Domoshnitsky A., Rasin A., Padhi S.). Ser.: Springer Proceed. in Math. Statist. Singapore: Springer Nature, 2021. V. 379. P. 145-167.
  14. Skvortsova M.A. Asymptotic properties of solutions to a system describing the spread of avian influenza // Сиб. электрон. матем. известия. 2016. Т. 13. С. 782-798.
  15. Скворцова М.А. Оценки решений в модели взаимодействия популяций с несколькими запаздываниями // Итоги науки и техники. Серия «Современная математика и ее приложения. Тематические обзоры». 2020. Т. 188. С. 84-105.
  16. Скворцова М.А., Ыскак Т. (Искаков Т.К.) Асимптотическое поведение решений в одной модели «хищник-жертва» с запаздыванием // Сиб. матем. журн. 2021. Т. 62. № 2. С. 402-416.
  17. Скворцова М.А. Оценки решений для одной биологической модели // Матем. труды. 2022. Т. 25. № 1. С. 152-176.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».