ESTIMATES FOR SOLUTIONS OF A BIOLOGICAL MODEL WITH INFINITE DISTRIBUTED DELAY
- Authors: Iskakov T.K1,2, Skvortsova M.A1,2
-
Affiliations:
- Novosibirsk State University
- Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
- Issue: Vol 64, No 8 (2024)
- Pages: 1409-1423
- Section: General numerical methods
- URL: https://journal-vniispk.ru/0044-4669/article/view/274992
- DOI: https://doi.org/10.31857/S0044466924080067
- EDN: https://elibrary.ru/YATLNK
- ID: 274992
Cite item
Abstract
About the authors
T. K Iskakov
Novosibirsk State University; Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
Email: istima92@mail.ru
Novosibirsk, Russia
M. A Skvortsova
Novosibirsk State University; Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
Email: sm-18-nsu@yandex.ru
Novosibirsk, Russia
References
- Скворцова М.А., Ыскак Т. (Искаков Т.К.) Оценки решений дифференциальных уравнений с распределенным запаздыванием, описывающих конкуренцию нескольких видов микроорганизмов // Сиб. журн. индустриал. матем. 2022. Т. 25. № 4. С. 193-205.
- Wolkowicz G.S.K., Xia H., Wu J. Global dynamics of a chemostat competition model with distributed delay // J. Math. Biology. 1999. V. 38. P. 285-316.
- Wolkowicz G.S.K., Xia H. Global asymptotic behavior of a chemostat model with discrete delays // SIAM J. Appl. Math. 1997. V. 57.№4. P. 1019-1043.
- MacDonald N. Time delays in chemostat models // in: Microbial Population Dynamics, M.J. Bazin, ed., CRC Press, Florida. 1982. P 33-53.
- Демиденко Г.В., Матвеева И.И. Асимптотические свойства решений дифференциальных уравнений с запаздывающим аргументом // Вестник НГУ. Сер.: матем., мех., информатика. 2005. Т. 5. № 3. С. 20-28.
- Демиденко Г.В., Матвеева И.И. Устойчивость решений дифференциальных уравнений с запаздывающим аргументом и периодическими коэффициентами в линейных членах // Сиб. матем. журн. 2007. Т. 48. № 5. С. 1025-1040.
- Демиденко Г.В., Матвеева И.И. Об оценках решений систем дифференциальных уравнений нейтрального типа с периодическими коэффициентами // Сиб. матем. журн. 2014. Т. 55. № 5. С. 1059-1077.
- Матвеева И.И. Об экспоненциальной устойчивости решений периодических систем нейтрального типа // Сиб. матем. журн. 2017. Т. 58. № 2. С. 344-352.
- Демиденко Г.В., Матвеева И.И., Скворцова М.А. Оценки решений дифференциальных уравнений нейтрального типа с периодическими коэффициентами в линейных членах // Сиб. матем. журн. 2019. Т. 60. № 5. С. 1063-1079.
- Матвеева И.И. Оценки экспоненциального убывания решений одного класса нелинейных систем нейтрального типа с периодическими коэффициентами // Ж. вычисл. матем. и матем. физ. 2020. Т. 60. № 4. С. 612-620.
- Ыскак Т. (Искаков Т.К.) Оценки решений одного класса систем нелинейных дифференциальных уравнений с распределенным запаздыванием // Сиб. электрон. матем. изв. 2020. Т. 17. С. 2204-2215.
- Ыскак Т. (Искаков Т.К.) Устойчивость решений систем нелинейных дифференциальных уравнений с бесконечным распределенным запаздыванием // Челябинский физ.-матем. журн. 2023. Т. 8. № 4. С. 542-552.
- Demidenko G.V., Matveeva I.I. The second Lyapunov method for time-delay systems // Functional Differential Equations and Applications (Editors: Domoshnitsky A., Rasin A., Padhi S.). Ser.: Springer Proceed. in Math. Statist. Singapore: Springer Nature, 2021. V. 379. P. 145-167.
- Skvortsova M.A. Asymptotic properties of solutions to a system describing the spread of avian influenza // Сиб. электрон. матем. известия. 2016. Т. 13. С. 782-798.
- Скворцова М.А. Оценки решений в модели взаимодействия популяций с несколькими запаздываниями // Итоги науки и техники. Серия «Современная математика и ее приложения. Тематические обзоры». 2020. Т. 188. С. 84-105.
- Скворцова М.А., Ыскак Т. (Искаков Т.К.) Асимптотическое поведение решений в одной модели «хищник-жертва» с запаздыванием // Сиб. матем. журн. 2021. Т. 62. № 2. С. 402-416.
- Скворцова М.А. Оценки решений для одной биологической модели // Матем. труды. 2022. Т. 25. № 1. С. 152-176.
Supplementary files
