ON 24TH-ORDER MULTI-OPERATOR APPROXIMATIONS IN SCHEMES FOR EQUATIONS WITH CONVECTIVE TERMS
- 作者: Tolstykh A.I1
-
隶属关系:
- Federal Research Center Computer Science and Control, RAS
- 期: 卷 64, 编号 9 (2024)
- 页面: 1589-1603
- 栏目: General numerical methods
- URL: https://journal-vniispk.ru/0044-4669/article/view/277172
- DOI: https://doi.org/10.31857/S0044466924090024
- EDN: https://elibrary.ru/WLDQMD
- ID: 277172
如何引用文章
详细
作者简介
A. Tolstykh
Federal Research Center Computer Science and Control, RAS
Email: tol@ccas.ru
Moscow, Russia
参考
- Tolstykh A.I. Multioperator high-order compact upwind methods for CFD parallel calculations, in: D.R. Emerson et al. (Eds.), Parallel Computational Fluid Dynamics, Amsterdam: Elsevier. 1998. P 383—390.
- Толстых А.И. Компактные и мультиоператорные аппроксимации высокой точности для уравнений в частных производных. М.: Наука, 2015.
- Tolstykh A.I., Shirobokov D.A. Fast calculations of screech using highly accurate multioperators-based schemes // J. Appl. Acoustics. 2013. V 74. P. 102-109.
- Tolstykh A. I. Development of arbitrary-order multioperators-based schemes for parallel calculations.2. Families of compact approximations with two-diagonal inversions and related multioperators // J. Comput. Phys. 2008. V. 227. P. 2922-2940.
- Толстых А.И. О семействах высокоточных мультиоператорных аппроксимаций производных, использующих двухточечные операторы // Докл. АН. 2017. Т. 473. № 12, C. 138-141.
- Tolstykh A.I., Shirobokov D.A. Using 16-th Order Multioperators-Based Scheme for Supercomputer Simulation of the Initial Stage of Laminar-Turbulent Transitions // Communications in Computer and Information Science, Springer. 2021, 1510 CCIS. P. 270-282.
- Lipavskii I. Konshin. Parallel Implementation of Multioperators-Based Scheme of the 16-th Order for Three Dimensional Calculation of the Jet Flows. In: Proc. of International Conference “Russian Supercomputing Days 2022”, September 26-27, 2022, Moscow: MSU Publishing House. P. 1-13.
- Tolstykh A.I., Shirobokov D.A. Observing production and growth of Tollmien-Schlichting waves in subsonic flat plate boundary layer via exciters-free high fidelity numerical simulation //J. of Turbulence. 2020. V 21. № 11. P 632—649.
- Tam C.K.W. Problem 1-aliasing, In: Fourth Computational Aeroacoustics (CAA) Workshop on benchmark problems, 2004, NASA/CP-2004-2159.
- Adams N.A., Shariff K. A high resolution Compact-ENO schemes for shock-turbulence interaction problems // J. Comput. Phys. 1996. V 127. P. 27-51.
- Sod G.A. A survey of several finite difference schemes for hyperbolic conservation laws // J. Comput. Phys. 1978. V. 27. P. 1-31.
- Liska R., Wendroff B. Comparison of several difference schemes on1D and 2D test problems for the Euler equations // SIAM J. Sci. Comput. 2003. V. 26. P. 995-1017.
- Zalesac S.T. Fully multidimensionalflux-corrected transport algorithms for fluids // J.Comput. Phys. 1979. V. 31. P. 335-362.
- Boris J.P., Book D.L. Flux-Corrected Transport. I. SHASTA, a fluid transport algorithm that works // J. Comput. Phys. 1973, V. 11. P. 38-69.
- Shu C.W., Osher S. Efficient implementation of essentially non-oscillatory shock capturing schemes II//J. Comput. Phys. 1989, V. 83. P. 32-78.
- Balsara D.S., Shu C.-W. Monotonicity preserving weighted essentially non-oscillatory schemes with increasingly high order of accuracy // J. Comput. Phys. 2020. V. 160 P. 405-452.
补充文件
