ESTIMATION OF THE REMAINDER TERMS OF CERTAIN HORN HYPERGEOMETRIC SERIES

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Integral representations and asymptotic estimates for remainder terms arising in the summation of the Appel hypergeometric 1 series and its related series 2, indicated in the Horn list of hypergeometric series of two variables, are constructed. The formulas found have an application to the development of algorithms for calculating the 1 function using formulas of analytical continuation into the entire C2 space. The results can be applied in problems of mathematical physics and computational theory of function, including the construction of a conformal mapping of complex polygons based on the Schwarz–Christoffel integral.

Авторлар туралы

S. Bezrodnykh

Federal Research Center “Informatics and Management” of the Russian Academy of Sciences

Email: sbezrodnykh@mail.ru
Moscow, Russia

O. Dunin-Barkovskaya

Federal Research Center “Informatics and Management” of the Russian Academy of Sciences; Sternberg Astronomical Institute, Moscow State University

Email: olga.ptitsyna@gmail.com
Moscow, Russia; Moscow, Russia

Әдебиет тізімі

  1. Тарасов О.В. Применение функциональных уравнений для вычисления фейнмановских интегралов //Теор. и матем. физ. 2019. Т 200. № 2. С. 324-342.
  2. Власов В.И., Скороходов С.Л. Аналитическое решение задачи о кавитационном обтекании клина. I // Ж. вычисл. матем. и матем. физ. 2020. Т. 60. № 12. С. 2098-2121.
  3. Kalmykov M., Bytev V., Kniehl B., Moch S.-O., Ward B., Yost S. Hypergeometric functions and Feynman diagrams. In: Blumlein J., Schneider C. (eds) Anti-Differentiation and the Calculation of Feynman Amplitudes. Texts & Monographs in Symbolic Computation (A Series of the Research Institute for Symbolic Computation, Johannes Kepler University, Linz, Austria). Springer, Cham, 2021.
  4. Bezrodnykh S.I., Vlasov V.I. Asymptotics of the Riemann — Hilbert problem for the Somov model of magnetic reconnection of long shock waves // Матем. заметки. 2021. V 110. № 6. P. 853-871,
  5. Шилин И. А., Чой Дж. Метод континуальных теорем сложения и интегральные соотношения между функциями Кулона и функцией Аппеля Fi //Ж. вычисл. мат. и матем. физики. 2022. Т. 62. № 9. С. 131-140.
  6. Karp D., Zhang Yi. Convergent expansions and bounds for the incomplete elliptic integral of the second kind near the logarithmic singularity // Math. Comp. 2023. V 92. № 344. P. 2769.
  7. Шилин И. А., Чой Дж. Алгебры Ли и специальные функции, связанные с изотропным конусом // Итоги науки и техн. Соврем. мат. и ее прил. Темат. обз., 222, ВИНИТИ РАН, М., 2023, 141-152.
  8. Claude Duhr, Franziska Porkert Feynman integrals in two dimensions and single-valued hypergeometric functions // J. High Energ. Phys. 2024. V 2.
  9. Wei Fan. Celestial conformal blocks of massless scalars and analytic continuation of the Appell function F1 // J. High Energ. Phys. 2024. V. 1.
  10. Appel P., Kampe de FerietJ. Fonctions hypergeometriques et hyperspherique. Paris: Gauthier-Villars, 1926.
  11. Бейтмен Г., Эрдейи А. Высшие трансцендентные функции. Гипергеометрическая функция. Функции Лежандра. М.: Наука, 1973.
  12. Exton H. Multiple hypergeometric functions and application. New York: J. Willey & Sons inc, 1976.
  13. ErdelyiA. Hypergeometric functions of two variables // Acta Mat. 1950. V 83. Iss. 131. P. 131—164.
  14. Olsson O.M. Integration of the partial differential equations for the hypergeometric function F1 and Fp of two and more variables // J. Math. Phys. 1964. V. 5. № 420. P. 420-430.
  15. Безродных С.И. Аналитическое продолжение функции Аппеля F1 и интегрирование связанной с ней системы уравнений в логарифмическом случае //Ж. вычисл. матем. и матем. физ. 2017. Т. 57. № 4. С. 555-587.
  16. Bezrodnykh S.I. Analytic continuation of Lauricella’s function Fp) for large in modulo variables near hyperplanes {zj = zl} // Integral Transforms and Special Functions. 2022. V 33. № 4. P. 276-291.
  17. Bezrodnykh S.I. Analytic continuation of Lauricella’s function F(7V) for variables close to unit near hyperplanes {zj = zi} // Integral Transforms and Special Functions. 2022. V 33. № 5. P. 419-433.
  18. ColavecchiaF.D, GasaneoG., MiragliaJ.E. Numerical evaluation of Appell’s F1 hypergeometric function// Comput. Phys. Communicat. 2001. V. 138. P. 29-43.
  19. Colavecchia F.D., Gasaneo G. f1: a code to compute Appell’s F1 hypergeometric function // Comput. Phys. Communicat. 2004. V 157. P. 32-38.
  20. Ananthanarayan B., Bera S., FriotS., Pathak T. Olsson.wl & ROC2.wl: Mathematica packages for transformations of multivariable hypergeometric functions & regions of convergence for their series representations in the two variables case // Comput. Phys. Communicat. 2024. V 300. 109162 crossref.
  21. Ananthanarayan B., Bera S, Friot S., Marichev O., Pathak T. On the evaluation of the Appell F2 double hypergeometric function // Comput. Phys. Communicat. 2023. V 284. 108589.
  22. Безродных С.И. Гипергеометрическая функция Лауричеллы /др'), задача Римана-Гильберта и некоторые приложения //Успехи матем. наук. 2018. Т. 73. № 6 (444). С. 3-94.
  23. Безродных С.И. Формулы для вычисления интегралов типа Эйлера и их приложение к задаче построения конформного отображения многоугольников //Ж. вычисл. матем. и матем. физ. 2023. V. 63. № 11. P 17631798.
  24. Wong R. Asymptotic approximations of integrals. Society for Industrial and Applied Mathematics, 2001.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Russian Academy of Sciences, 2024

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».