RAMSEY’S CONJECTURE OF SOCIAL STRATIFICATION AS FISHER’S SELECTION PRINCIPLE
- Authors: Parastaev G.S.1,2, Shananin A.A.1,2,3,4,5
-
Affiliations:
- Faculty of Computational Mathematics and Cybernetics, Lomonosov Moscow State University
- Federal Research Center "Computer Science and Control" of the Russian Academy of Sciences
- Moscow Institute of Physics and Technology (National Research University)
- Moscow Center for Fundamental and Applied Mathematics
- Peoples’ Friendship University of Russia (RUDN University)
- Issue: Vol 64, No 12 (2024)
- Pages: 2420–2448
- Section: Computer science
- URL: https://journal-vniispk.ru/0044-4669/article/view/279989
- DOI: https://doi.org/10.31857/S0044466924120156
- EDN: https://elibrary.ru/KBERNL
- ID: 279989
Cite item
Abstract
About the authors
G. S. Parastaev
Faculty of Computational Mathematics and Cybernetics, Lomonosov Moscow State University; Federal Research Center "Computer Science and Control" of the Russian Academy of Sciences
Email: parastaew1996@yandex.ru
Moscow, 119991 Russia; Moscow, 119333 Russia
A. A. Shananin
Faculty of Computational Mathematics and Cybernetics, Lomonosov Moscow State University; Federal Research Center "Computer Science and Control" of the Russian Academy of Sciences; Moscow Institute of Physics and Technology (National Research University); Moscow Center for Fundamental and Applied Mathematics; Peoples’ Friendship University of Russia (RUDN University)
Email: alexshan@yandex.ru
Moscow, 119991 Russia; Moscow, 119333 Russia; Moscow oblast, 141701 Russia; Moscow, 119991 Russia; Moscow, 117198 Russia
References
- Piketty T. Capital in the Twenty-First Century. Cambridge: The Belknap Press of Harvard University Press, 2014.
- Aghion P., Williamson J. G. Growth, Inequality and Globalization: Theory, History and Policy. Cambridge: Cambridge University Press, 1999.
- Atkinson A. B. Inequality: What Can Be Done? Cambridge: Harvard University Press, 2015.
- Ramsey F. P. A Mathematical Theory of Saving // Econ. J. 1928. V. 38. № 152. P. 543–559.
- Acemoglu D. Introduction to Modern Economic Growth. Princeton: Princeton University Press, 2009.
- Becker R. A. Equilibrium Dynamics with Many Agents. In: Dana R.-A., Le Van C., Mitra T., Nishimura K. Handbook on Optimal Growth 1: Discrete Time. Berlin: Springer, 2006. P. 385–442.
- Борисов К. Ю., Пахнин М. А. Модели экономического роста с неоднородным дисконтированием // Ж. вычисл. матем. и матем. физ. 2023. Т. 63. № 3. С. 355–379.
- Becker R. A. On the Long-run Steady State in a Simple Dynamic Model of Equilibrium with Heterogeneous Households // Q. J. Econ. 1980. V. 95. № 2. P. 375–382.
- Bewley T. F. An integration of equilibrium theory and turnpike theory // J. Math. Econ. 1982. V. 10. P. 233–267.
- Mitra T., Sorger G. On Ramsey’s conjecture // J. Econ. Theory. 2013. V. 148. № 5. P. 1953–1976.
- Koopmans T. C. Stationary Ordinal Utility and Impatience // Econometrica. 1960. V. 28. № 2. P. 287–309.
- Uzawa H. Time Preference, the Consumption Function, and Optimal Asset Holdings. In: Wolfe J. N. (ed.) Value, Capital and Growth: Papers in Honour of Sir John Hicks. Chicago: Aldine Publishing Company, 1968. P. 485–505.
- Borissov K. Growth and Distribution in a Model with Endogeneous Time Preferences and Borrowing Constraints // Math. Soc. Sci. 2013. V. 66. № 2. P. 117–128.
- Borissov K., Lambrecht S. Growth and Distribution in an AK-model with Endogeneous Impatience // Econ. Theory. 2009. V. 39. № 1. P. 93–112.
- Duesenberry J. S. Income, Saving and the Theory of Consumer Behavior. Cambridge: Harvard University Press, 1949.
- Keynes J. M. The General Theory of Employment, Interest and Money. London: Macmillan, 1936.
- Frank R. H. Falling Behind: How Rising Inequality Harms the Middle Class. Berkeley: University of California Press, 2007.
- Schlicht E. A Neoclassical Theory of Wealth Distribution // Jahrb. Natl. Stat. 1975. V. 189. P. 78–96.
- Bourguignon F. Pareto Superiority of Unegalitarian Equilibria in Stiglitz’ Model of Wealth Distribution with Convex Saving Function // Econometrica. 1981. V. 49. P. 1469–1475.
- Borissov K. The Rich and the Poor in a Simple Model of Growth and Distribution // Macroecon. Dyn. 2016. V. 20. № 7. P. 1934–1952.
- Fisher R. A. The Genetical Theory of Natural Selection. Oxford: Clarendon Press, 1930.
- Асеев С. М., Кряжимский А. В. Принцип максимума Понтрягина и задачи оптимального экономического роста // Тр. МИАН. 2007. Т. 257. С. 3–271.
- Асеев С. М., Бесов К. О., Кряжимский А. В. Задачи оптимального управления на бесконечном интервале времени в экономике // Успехи матем. наук. 2012. Т. 67. Вып. 2 (404). С. 3–64.
- Carlson D. A., Haurie A. B., Leizarowitz A. Infinite Horizon Optimal Control: Deterministic and Stochastic Systems. Berlin: Springer-Verlag, 1991.
- Seierstad A., Syds ter K. Optimal Control Theory with Economic Applications. Amsterdam: North-Holland, 1987.
- Fleming W. H., Soner H. M. Controlled Markov Processes and Viscosity Solutions. New York: Springer, 2006.
- Тихонов А. Н., Васильева А. Б., Свешников А. Г. Дифференциальные уравнения. М.: Физматлит, 2005. 256 с.
- Marshall A. W., Olkin I., Arnold B. C. Inequalities: Theory of Majorization and Its Applications. Second Edition. New York: Springer, 2011.
Supplementary files
