ON SPECTRAL APPROXIMATIONS FOR THE STABILITY ANALYSIS OF BOUNDARY LAYERS
- Authors: Zasko G.V1
-
Affiliations:
- Marchuk Institute of Numerical Mathematics
- Issue: Vol 65, No 1 (2025)
- Pages: 10-22
- Section: Ordinary differential equations
- URL: https://journal-vniispk.ru/0044-4669/article/view/287381
- DOI: https://doi.org/10.31857/S0044466925010027
- EDN: https://elibrary.ru/CDGWXI
- ID: 287381
Cite item
Abstract
Approximation of spectral and boundary-value problems arising in the stability analysis of incompressible boundary layers is considered. As an alternative to the collocation method with mappings, the Galerkin–collocation method based on Laguerre functions is adopted. A robust numerical implementation of the latter method is discussed. The methods are compared within the stability analysis of the Blasius and Ekman layers. The Galerkin-collocation method demonstrates an exponential convergence rate for scalar stability characteristics and has a number of advantages.
About the authors
G. V Zasko
Marchuk Institute of Numerical Mathematics
Author for correspondence.
Email: zasko.gr@bk.ru
Moscow, Russia
References
- Zhigulev V.N., Tumin A.M. Origin of Turbulence: Dynamic Theory of Excitation and Evolution of Instabilities in Boundary Layers. Nauka, Novosibirsk, 1987 (in Russian).
- Schmid P.J., Henningson D.S. Stability and Transition in Shear Flows. New York: Springer New York. 2000. 558 p.
- Boiko A.V., Dovgal A.V., Grek G.R., Kozlov V.V. Physics of Transitional Shear Flows: instability and laminar-turbulent transition in incompressible near-wall shear layers. Berlin: Springer–Verlag. 2011. 272 p.
- Canuto C., Hussaini M.Y., Quarteroni A., Zang T. Spectral Methods: Fundamentals in Single Domains. Springer, Berlin, 2006.
- Boyd J.P. Chebyshev and Fourier Spectral Methods (2nd ed.). Dover Publications, New York, 2000.
- Trefethen L.N. Approximation Theory and Approximation Practice. SIAM, 2019.
- Weideman J.A.C., Reddy S.C. A MATLAB Differentiation Matrix Suite // ACM Trans. Math. Soft. 2000. V. 26, P. 465–519.
- Driscoll T.A., Hale N., Trefethen L.N. Chebfun Guide. 2014.
- Boiko A.V., Demyanko K.V., Nechepurenko Yu.M. Asymptotic boundary conditions for the analysis of hydrodynamic stability of flows in regions with open boundaries // Russ. J. Numer. Anal. Math. Model. 2019. V. 34, N. 1, P. 15–29.
- Spalart P.R., Moser R.D., Rogers M.M. Spectral methods for the Navier-Stokes equations with one infinite and two periodic directions // J. Comput. Phys. 1991. V. 96, P. 297–324.
- Shen J., Wang L.-L. Some recent advances on spectral methods for unbounded domains // Comm. Comput. Phys. 2009. V. 5, N. 2–4, P. 195–241.
- Grosch C.E., Orszag S.A. Numerical solution of problems in unbounded regions: coordinate transforms // J. Comput. Phys. 1977. V. 25, P. 273–296.
- Boyd J.P. The optimization of convergence for Chebyshev polynomial methods in an unbounded domain // J. Comput. Phys. 1982. V. 45, P. 43–79.
- Foster R.C. Structure and energetics of optimal Ekman layer perturbations // J. Fluid Mech. 1997. V. 333, P. 97–123.
- Boiko A.V., Demyanko K.V., Kirilovskiy S.V., Nechepurenko Yu.M., Poplavskaya T.V. Modeling of transonic transitional three-dimensional flows for aerodynamic applications // AIAA Journal. 2021. V. 59, N. 9, P. 3598–3610.
- Shen J. Stable and efficient spectral methods in unbounded domains using Laguerre functions // SIAM J. Numer. Anal. 2000. V. 28, P. 1113–1133.
- Gautschi W. Gauss-Radau formulae for Jacobi and Laguerre weight functions // Math. Comp. Simul. 2000. V. 54, P. 403–412.
- Boiko A.V., Demyanko K.V., Nechepurenko Yu.M., Zasko G.V. On the use of probability-based methods for estimating the aerodynamic boundary-layer thickness // Fluids. 2021. V. 6, P. 267.
- Szego G. Orthogonal Polynomials (4th ed.). American Mathematical Society Colloqium Publications, 1975.
- Shen J., Tang T. Spectral and High-Order Methods with Applications. Science Press, Beijing, 2006.
- Wang P., Huybrechs D., Vandewalle S. Explicit barycentricweights for polynomial interpolation in the roots or extrema of classical orthogonal polynomials // Math. Comp. 2014. V. 83, P. 2893–2914.
- Nechepurenko Yu.M. On the dimension reduction of linear differential-algebraic control systems // Doklady Mathemathics. 2012. V. 86, N. 1, P. 457–459.
- Nechepurenko Yu.M., Sadkane M. A low-rank approximation for computing the matrix exponential norm // SIAM J. Matr. Anal. Appl. 2011. V. 32, N. 2, P. 349–363.
- Zasko G.V., Boiko A.V., Demyanko K.V., Nechepurenko Yu.M. Simulating the propagation of boundary-layer disturbances by solving boundary-value and initial-value problems // Russ. J. Numer. Anal. Math. Model., 2024, V. 39, N. 2, P. 47–59.
Supplementary files
