AVERAGING OF INTEGRO-DIFFERENTIAL SYSTEMS OF EQUATIONS WITH MULTIPOINT BOUNDARY CONDITIONS CONDITIONS

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In this paper we consider a system of integro-differential equations with rapidly time oscillating data and multipoint integral boundary conditions. The latter may depend explicitly on a large parameter ω — high frequency of oscillations of the initial system of equations. For this problem the limit problem at ω → ∞is constructed and the limit transition is justified. Thereby, the time averaging method, which is also called the Krylov–Bogoliubov averaging method, is justified for the above problem in this paper.

About the authors

V. B. Levenshtam

Southern Federal University; Gubkin Mathematical Institute named after V. L. Steklov RAS (V. L. Steklov Mathematical Institute Russian Academy of Sciences); Southern Mathematical Institute - Branch of the All-Russian Scientific Center of RAS

Email: vlevenshtam@yandex.ru
Rostov-on-Don, Russia; Moscow, Russia; Vladikavkaz, Russia

M. R. Yavaeva

Southern Federal University

Email: marinayavaeva@yandex.ru
Rostov-on-Don, Russia

References

  1. Боголюбов Н.Н. О некоторых статистических методах в математической физике. Киев: Изд. АН УССР, 1945.
  2. Боголюбов Н.Н., Митропольский Н.М. Асимптотические методы в теории нелинейных колебаний. М.: Наука, 1974.
  3. Константинов М.М., Байнов Д.Д. О применении метода усреднения к некоторым многоточечным краевым задачам // Bull. Math. da la Soc. Sci. Math. de la R. S. de la Roumanie. 1974. Т. 18(66).№3/4. С. 307–310.
  4. Левенштам В.Б., Шубин П.Е. Обоснование метода усреднения для дифференциальных уравнений с большими быстро осциллирующими слагаемыми и краевыми условиями // Матем. заметки. 2016. Т. 100. Вып. 1. С. 94–108.
  5. Bigirindavyi D., Levenshtam V.B. Justification of the averaging method for differential equations with multipoint boundary value problems // Springer Proceedings in Mathematics and Statistics. 2021. Vol. 357. P. 137–142.
  6. Симоненко И.Б. Обоснование метода осреднения для абстрактных параболических уравнений // Матем. сб. 1970. Т. 81(123).№1. С. 53–61.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».