ESTIMATION OF THE REMAINDER TERM OF THE APPEL HYPERGEOMETRIC SERIES F2
- Authors: Bezrodnykh S.I1, Dunin-Barkovskaya O.V1,2
-
Affiliations:
- Federal Research Center "Computer Science and Control" of the Russian Academy of Sciences
- Sternberg Astronomical Institute, Moscow State University
- Issue: Vol 65, No 12 (2025)
- Pages: 1973-1994
- Section: General numerical methods
- URL: https://journal-vniispk.ru/0044-4669/article/view/369547
- DOI: https://doi.org/10.7868/S3034533225120015
- ID: 369547
Cite item
Abstract
About the authors
S. I Bezrodnykh
Federal Research Center "Computer Science and Control" of the Russian Academy of Sciences
Email: sbezrodnykh@mail.ru
Moscow, Russia
O. V Dunin-Barkovskaya
Federal Research Center "Computer Science and Control" of the Russian Academy of Sciences; Sternberg Astronomical Institute, Moscow State UniversityMoscow, Russia; Moscow, Russia
References
- Appel P. Sur les series hypergeometriques de deux variables et sur des equations diff’erentielles lin’eaires aux d’eriv’ees partielles // Comptes Rendus. 1880. V. 90. P. 296–298.
- Appel P., Kampe de Feriet J. Fonctions hypergeometriques et hyperspherique. Paris: Gauthier-Villars, 1926.
- Бейтмен Г., Эрдейи А. Высшие трансцендентные функции. Гипергеометрическая функция. Функции Лежандра. М.: Наука, 1973.
- Bezrodnykh S.I. Analytic continuation of Lauricella’s function FD(N) for large in modulo variables near hyperplanes {zj = zl} // Integral Transforms and Special Functions. 2022. V. 33. №4. P. 276–291.
- Bezrodnykh S.I. Analytic continuation of Lauricella’s functions FA(N), FB(N) andFD(N) // Integral Transforms and Special Functions. 2020. V. 31. №11. P. 921–940.
- Exton H. Multiple hypergeometric functions and application. New York: J. Willey & Sons inc, 1976.
- Erdelyi A. Hypergeometric functions of two variables // Acta Mat. 1950. V. 83. Iss. 131. P. 131–164.
- Безродных С.И., Дунин-Барковская О.В. Оценка остаточного члена при суммировании некоторых гипергеометрических рядов Горна // Ж. вычисл. матем. и матем. физ. 2024. Т. 64. №12. С. 2229–2242.
- Bezrodnykh S.I., Dunin-Barkovskaya O.V. Estimation of the remainder term of the Lauricella series FD(N) // Math. Notes. 2024. V. 116. №5. P. 905-919.
- Colavecchia F.D., Gasaneo G. fl: a code to compute Appell's F1 hypergeometric function // Comput. Phys. Communicat. 2004. V. 157. P. 32-38.
- Ananthanarayan B., Bera S., Friot S., Marichev O., Pathak T. On the evaluation of the Appell F2 double hypergeometric function // Comput. Phys. Communicat. 2023. V. 284. 108589.
- Bera S., Pathak T. Analytic continuations and numerical evaluation of the Appell F1, F3, Lauricella FD(3) and Lauricella-Saran FS(3) and their Application to Feynman Integrals // Comput. Phys. Communicat. 2025. V. 306. 109386589.
- Bezuglov M.A., Kniehl B.A., Onishchenko A.I., Veretin O.L. High-precision numerical evaluation of Lauricella functions // Nuclear Phys. B. 2025. 116994.
- Тарасов О.В. Применение функциональных уравнений для вычисления фейнмановских интегралов // Теор. и матем. физ. 2019. T. 200. №2. C. 324–342.
- Власов В.И., Скороходов С.Л. Аналитическое решение задачи о кавитационном обтекании клина. 1 // Ж. вычисл. матем. и матем. физ. 2020. T. 60. №12. C. 2098–2121.
- Власов В.И., Скороходов С.Л. Аналитическое решение задачи о кавитационном обтекании клина. II // Ж. вычисл. матем. и матем. физ. 2021. V. 61. №11. C. 1873–1893.
- Kalmykov M., Bytev V., Kniehl B., Moch S.-O., Ward B., Yost S. Hypergeometric functions and Feynman diagrams. In: Blumlein J., Schneider C. (eds) Anti-Differentiation and the Calculation of Feynman Amplitudes. Texts & Monographs in Symbolic Computation (A Series of the Research Institute for Symbolic Computation, Johannes Kepler University, Linz, Austria). Springer, Cham, 2021.
- Karp D., Zhang Y. Convergent expansions and bounds for the incomplete elliptic integral of the second kind near the logarithmic singularity // Math. Comp. 2023. V. 92. №344. P. 2769.
- Шилин И. А., Чой Дж. Алгебры Ли и специальные функции, связанные с изотропным конусом // Итоги науки и техн. Соврем. мат. и ее прил. Темат. обз., 222, ВИНИТИ РАН, М., 2023. C. 141–152.
- Claude Duhr, Franziska Porkert Feynman integrals in two dimensions and single-valued hypergeometric functions // J. High Energ. Phys. 2024. V. 2.
- Pantig R.C. Apparent and emergent dark matter around a Schwarzschild black hole // Physics of the Dark Universe. 2024. V. 45. 101550.
- Wei Fan. Celestial conformal blocks of massless scalars and analytic continuation of the Appell function F1 // J. High Energ. Phys. 2024. V. 2024. article number 145.
- Takahashi D.A. Electric potentials and field lines for uniformly-charged tube and cylinder expressed by Appell's hypergeometric function and integration of Z(u|m)sc(u|m) // J. Phys. Soc. Japan. 2025. V. 94. №5. https://doi.org/10.7566/JPSJ.94.053001
- Wong R. Asymptotic approximations of integrals // Soc. Industr. and Appl. Math. 2001.
Supplementary files


