ACCELERATED ITERATIVE LEARNING CONTROL ALGORITHMS FOR DISCRETE SYSTEMS UNDER RANDOM DISTURBANCES

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Iterative learning control (ILC) algorithms emerged in connection with the tasks of increasing the accuracy of repetitive operations performed by robots. They use information from past repetitions to adjust the control signal for the current repetition. In the ILC literature, these repetitions are called trial steps, trials, or passes. A critical indicator of the efficiency of such algorithms is the rate of convergence of the learning error to a given value, ideally to zero. To increase the convergence rate of ILC algorithms, the authors in their recent works proposed a combination of the heavy ball method and the vector Lyapunov function method for repetitive processes that they had developed earlier. It turns out that this approach allows one to implicitly predict the gradient direction of the cost function, which allows one to significantly increase the convergence rate. In the examples, convergence to computer zero was achieved in just a few trial steps. However, this did not take into account the inevitably present random disturbances affecting the system and measurement noise, which reduce the achievable accuracy. In this paper, the specified approach is extended to the case of discrete systems, taking into account the aforementioned random factors. The results of modeling, confirming the theoretical results, are presented using the example of a laboratory portal robot.

About the authors

P. V. Pakshin

Arzamas Polytechnic Institute of Nizhny Novgorod State Technical University

Email: pakshinpv@gmail.com
Arzamas, Russia

J. P. Emelianova

Arzamas Polytechnic Institute of Nizhny Novgorod State Technical University

Email: emelianovajulia@gmail.com
Arzamas, Russia

M. A. Emelianov

Arzamas Polytechnic Institute of Nizhny Novgorod State Technical University

Email: mikhailemelianovarzamas@gmail.com
Arzamas, Russia

References

  1. Arimoto S., Kawamura S., Miyazaki F. Bettering operation of robots by learning // J. Robot. Syst. 1984. V. 1. P. 123-140.
  2. Bristow D.A., Tharayil M., Alleyne A.G. A survey of iterative learning control: a learning-based method for high-performance tracking control // IEEE Control Syst. Magaz. 2006. V. 26. № 3. P. 96-114.
  3. Ahn H-S., Chen Y.Q., Moore K.L. Iterative learning control: survey and categorization // IEEE Trans. Syst. Man Cybern. Part C: Appl. Rev. 2007. V. 37. № 6. P. 1099-1121.
  4. Rogers E., Chu B., Freeman C., Lewin P. Iterative learning control algorithms and experimental benchmarking chichester. John Wiley & Sons, 2023.
  5. Lim I., Hoelzle D.J., Barton K.L. A multi-objective iterative learning control approach for additive manufacturing applications // Control Engineer. Practice. 2017. V. 64. P. 74-87.
  6. Sammons P.M., Gegel M.L., Bristow D.A., Landers R.G. Repetitive process control of additive manufacturing with application to laser metal deposition // IEEE Transact. Control Syst. Technol. 2019. V. 27. N. 2. P. 566-575.
  7. Freeman C.T., Rogers E., Hughes A.-M., Burridge J.H., Meadmore K.L. Iterative learning control in health care: electrical stimulation and robotic-assisted upper-limb stroke rehabilitation // IEEE Control Syst. Magaz. 2012. V. 47. P. 70-80.
  8. Meadmore K.L., Exell T.A., Hallewell E., Hughes A.-M., Freeman C.T., Kutlu M., Benson V., Rogers E., Burridge J.H. The application of precisely controlled functional electrical stimulation to the shoulder, elbow and wrist for upper limb stroke rehabilitation: a feasibility study // J. NeuroEngineer. Rehabilitat. 2014. P. 11-105.
  9. Ketelhut M., Stemmler S., Gesenhues J., Hein M., Abel D. Iterative learning control of ventricular assist devices with variable cycle durations // Control Engineer. Practice. 2019. V. 83. P. 33-44.
  10. Wang Y., Gao F., Doyle F. J. Survey on iterative learning control, repetitive control, and run-to-run control // J. Process Control 2009. V. 19. P. 1589-1600.
  11. Ahn H.S., Moore K.L., Chen Y.Q. Iterative learning control. Robustness and monotonic convergence for interval systems / Lecture notes in control and information sciences. London: Springer-Verlag, 2007.
  12. Bien Z., Huh K.M. Higher-order iterative learning control algorithm // IEE Proc. D-Control Theory Appl. 1989. V. 136. P. 105-112.
  13. Chen Y., Gong Z., Wen C. Analysis of a high-order iterative learning control algorithm for uncertain nonlinear systems with state delays // Automatica. 1998. V. 34. P. 345-353.
  14. Norrlof M., Gunnarsson S. A frequency domain analysis of a second order iterative learning control algorithm // Proc. 38th IEEE Conf. Decis. Control. 1999. V. 2. P. 1587-1592.
  15. Phan M. Q., Longman R. W. Higher-order iterative learning control by pole placement and noise filtering // IFAC Proc. Volumes. 2002. V. 35. P. 25-30.
  16. Bu X., Yu F., Fu Z., Wang F. Stability analysis of high-order iterative learning control for a class of nonlinear switched systems // Abstract Appl. Anal. 2013. V. 2013. P. 1-13.
  17. Wei Y.-S., Li X.-D. Robust higher-order ILC for non-linear discrete-time systems with varying trail lengths and random initial state shifts // IET Control Theory Appl. 2017. V. 11. P. 2440-2447.
  18. Wang X., Chu B., Rogers E. Higher-order Iterative Learning Control Law Design using Linear Repetitive Process Theory: Convergence and Robustness // IFAC PapersOnLine. 2017. V. 50-1. P. 3123-3128.
  19. Пакшин П.В., Емельянова Ю.П., Емельянов М.А. Алгоритмы управления с итеративным обучением высшего порядка для линейных систем // Ж. вычисли. матем. и матем. физ. 2024. Т. 64. № 4. С. 644-657.
  20. Пакшин П.В., Емельянова Ю.П., Роджерс Э. Синтез управления с итеративным обучением для дискретных систем на основе наблюдателя состояния с использованием метода тяжелого шарика // Автоматика и телемехан. 2024. № 8. С. 99-118.
  21. Поляк Б.Т. О некоторых способах ускорения сходимости итерационных методов // Ж. вычисли. матем. и матем. физ. 1964. Т. 4. № 5. С. 791-803.
  22. Поляк Б.Т. Введение в оптимизацию. М.: Наука, 1983.
  23. d'Aspremont A., Scieur D., Taylor A. Acceleration Methods. arXiv:2101.09545v3. 2021.
  24. Gu P., Tian S., Chen Y. Iterative learning control based on Nesterov accelerated gradient method // IEEE Access. 2019. V. 7. P. 115836-115842.
  25. Нестеров Ю.Е. Метод решения задачи выпуклого программирования со скоростью сходимости O(1/k2) // Докл. АН СССР. 1983. Т. 269. № 3. С. 543-547.
  26. Paszke W., Rogers E., Galkowski K., Experimentally verified generalized KYP lemma based iterative learning control design // Control Engineer. Pract. 2016. V. 53. P. 57-67.
  27. Цыпкин Я.З. Адаптация и обучение в автоматических системах. M.: Наука, 1968.
  28. Rogers E., Galkowski K., Owens D.H. Control systems theory and applications for linear repetitive processes. Berlin: Springer-Verlag, 2007.
  29. Hladowski L., Galkowski K., Cai Z., Rogers E., Freeman C.T., Lewin P.L. Experimentally supported 2D systems based iterative learning control law design for error convergence and performance // Control Engineer. Pract. 2010. V. 18. P. 339-348.
  30. Pakshin P., Emelianova J., Emelianov M., Galkowski K., Rogers E. Dissipativity and stabilization of nonlinear repetitive processes // Systems & Control Lett. 2016. V. 91. P. 14-20.
  31. Пакшин П.В., Емельянова Ю.П. Управление с итеративным обучением дискретными стохастическими системами с переключениями // Автоматика и телемехан. 2020. № 11. C. 93-111.
  32. Pakshin P., Emelianova J., Rogers E., Galkowski K. Repetitive process based stochastic iterative learning control design for linear dynamics // Systems & Control Lett. 2020. V. 137. № 104625.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».