Анализ формул численного дифференцирования на сетке Бахвалова при наличии пограничного слоя

Обложка

Цитировать

Полный текст

Аннотация

Рассматривается вопрос численного дифференцирования функций с большими градиентами в области экспоненциального пограничного слоя. Тема исследования актуальна, так как применение к таким функциям классических полиномиальных разностных формул для производных в случае равномерной сетки приводит к неприемлемым погрешностям, если возмущающий параметр \(\varepsilon \) соизмерим с шагом сетки. Формула численного дифференцирования с заданным числом узлов в сеточном шаблоне строится на подынтервалах, покрывающих исходный интервал. Проведен анализ точности формул численного дифференцирования на сетке Бахвалова, широко применяемой при построении разностных схем для сингулярно возмущенных задач. Для исходной функции одной переменной использовано представление в виде суммы регулярной и погранслойной составляющих на основе декомпозиции Шишкина для решения сингулярно возмущенной задачи. Ранее такая декомпозиция применялась для обоснования сходимости разностных схем. Получена оценка погрешности классических полиномиальных формул численного дифференцирования на сетке Бахвалова. Оценка погрешности на сетке Бахвалова получена в общем случае, когда вычисляется производная произвольно заданного порядка, и сеточный шаблон для этой производной содержит задаваемое число узлов. Оценка погрешности зависит от порядка вычисляемой производной, числа узлов в сеточном шаблоне для производной и учитывает равномерность по параметру \(\varepsilon \). Приведены результаты численных экспериментов, согласующиеся с полученными оценками погрешностей. Библ. 16. Табл. 4.

Об авторах

А. И. Задорин

Ин-т матем. СО РАН

Автор, ответственный за переписку.
Email: zadorin@ofim.oscsbras.ru
Россия, 630090, Новосибирск, пр-т Акад. Коптюга, 4

Список литературы

  1. Ильин А.М. Разностная схема для дифференциального уравнения с малым параметром при старшей производной // Матем. заметки. 1969. Т. 6. № 2. С. 237–248.
  2. Бахвалов Н.С. К оптимизации методов решения краевых задач при наличии пограничного слоя // Ж. вычисл. матем. и матем. физ. 1969. Т. 9. № 4. С. 841–890.
  3. Шишкин Г.И. Сеточные аппроксимации сингулярно возмущенных эллиптических и параболических уравнений. Екатеринбург: УрО РАН, 1992.
  4. Miller J.J.H., O’Riordan E., Shishkin G.I. Fitted numerical methods for singular perturbation problems: error estimates in the maximum norm for linear problems in one and two dimensions. Singapore: World Sci. Publ., 2012.
  5. Задорин А.И., Задорин Н.А. Сплайн-интерполяция на равномерной сетке функции с погранслойной составляющей // Ж. вычисл. матем. и матем. физ. 2010. Т. 50. № 2. С. 221–233.
  6. Zadorin A.I., Zadorin N.A. Interpolation formula for functions with a boundary layer component and its application to derivatives calculation // Sib. Electron. Math. Rep. 2012. V. 9. P. 445–455.
  7. Zadorin A., Tikhovskaya S. Formulas of numerical differentiation on a uniform mesh for functions with the exponential boundary layer // Internat. J. Numer. Anal. Model. 2019. V. 16. № 4. P. 590–608.
  8. Il’in V.P., Zadorin A.I. Adaptive formulas of numerical differentiation of functions with large gradients // J. Phys.: Conf. Ser. 2019. V. 1260. 042003.
  9. Kopteva N.V., Stynes M. Approximation of derivatives in a convection-diffusion two-point boundary value problem // Appl. Numer. Math. 2001. V. 39. P. 47–60.
  10. Shishkin G.I. Approximations of solutions and derivatives for a singularly perturbed elliptic convection-diffusion equations // Math. Proc. Royal Irish Acad. 2003. V. 103A. № 4. P. 169–201.
  11. Задорин А.И. Анализ формул численного дифференцирования на сетке Шишкина при наличии пограничного слоя // Сиб. журн. вычисл. матем. 2018. Т. 21. № 3. С. 243–254.
  12. Linβ T. The Necessity of Shishkin Decompositions // Appl. Math. Lett. 2001. V. 14. P. 891–896.
  13. Zadorin N.A. Numerical differentiation on the Bakhvalov mesh in the presence of an exponential boundary layer // J. Phys.: Conf. Ser. 2020. V. 1546. 012108.
  14. Блатов И.А., Задорин Н.А. Интерполяция на сетке Бахвалова при наличии экспоненциального пограничного слоя // Уч. зап. Казанского ун-та. Физ.-матем. науки. 2019. Т. 161. Кн. 4. С. 497–508.
  15. Roos H.G. Layer-adapted meshes: milestones in 50 years of history // Appl. Math. arXiv:1909.08273v1, 2019.
  16. Бахвалов Н.С. Численные методы. М.: Наука, 1975.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© А.И. Задорин, 2023

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».