БЫСТРЫЙ ЧИСЛЕННЫЙ МЕТОД ДЛЯ ЗАДАЧИ О ВОССТАНОВЛЕНИИ ФУНКЦИИ ИСТОЧНИКА В УРАВНЕНИИ КОАГУЛЯЦИИ-ДРОБЛЕНИЯ

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Предлагается быстрый численный метод для задачи о восстановлении функции источника в уравнении коагуляции-дробления вещества Смолуховского. Предлагаемый метод основан на более ранней работе с более подробным изложением перехода от уравнения коагуляции-дробления к итоговой системе вариационных уравнений и итерационному процессу. В этот процесс внедрены алгоритмы на основе матриц малого ранга для снижения сложности вычислений каждой итерации. Использование предлагаемой методологии на практике позволяет ускорить вычисления в тысячи раз без потери точности исходного алгоритма.

Об авторах

Р. Т Закс

ИВМ РАН; МГУ имени М.В. Ломоносова

Email: zaks.robert@bk.ru
Москва, Россия

С. А Матвеев

МГУ имени М.В. Ломоносова; ИВМ РАН

Email: matseralex@gmail.com
Москва, Россия

В. П Шутяев

ИВМ РАН

Москва, Россия

Список литературы

  1. Brilliantov N., Krapivsky P.L., Bodrova A., Spahn F., Hayakawa H., Stadnichuk V., Schmidt J. Size distribution of particles in Saturn’s rings from aggregation and fragmentation // Proceed. Nation. Acad. Sci. 2015. T. 112. №. 31. C. 9536–9541.
  2. Sabelfeld K.K., Eremeev G. A hybrid kinetic-thermodynamic Monte Carlo model for simulation of homogeneous burst nucleation // Monte Carlo Meth. Appl. 2018. T. 24. №. 3. C. 193–202.
  3. Алоян А. Е. Динамика и кинетика газовых примесей и аэрозолей в атмосфере. М.: ИВМ РАН, 2002.
  4. Coufort C., Bouyer D., Line A., Haut B. Modelling of flocculation using a population balance equation // Chemic. Engineer. Proc.: Process Intensificat. 2007. V. 46. № 12. P. 1264–1273.
  5. Zhamsueva G., Zayakhanov A., Teydypov V., Dementeva A., Balzhanov T. Spatial-temporal variability of small gas impurities over lake Baikal during the forest fires in the summer of 2019 // Atmosphere. 2020. V. 12. № 1. P. 20.
  6. Brilliantov N.V., Zagidullin R.R., Matveev S.A., Smirnov A.P. Aggregation kinetics in sedimentation: Effect of diffusion of particles // Comput. Math. and Math. Phys. 2023. V. 63. № 4. P. 596–605.
  7. Purohit A., Velizhanin K.A. Kinetics of carbon condensation in detonation of high explosives: First-order phase transition theory perspective // J. Chemic. Phys. 2021. T. 155. № 16.
  8. Tanxun B.A. Уравнение Смолуховского. М.: Физматлит, 2002.
  9. Melzak Z.A. A scalar transport equation // Transact. Amer. Math. Soc. 1957. V. 85. № 2. P. 547–560.
  10. McLeod J.B. On an infinite set of non-linear differential equations // Quarterly J. Math. 1962. V. 13. № 1. P. 119–128.
  11. Mirzaev I., Byrne E.C., Bortz D.M. An inverse problem for a class of conditional probability measure-dependent evolution equations // Inverse Problem. 2016. 32.9: 095005.
  12. Agoshkov V.I., Dubovski P.B. Solution of the reconstruction problem of a source function in the coagulation-fragmentation equation // Russ. J. Numer. Anal. Math. Model. 2002. V. 17. № 4. P. 319–330.
  13. Mameeea C.A., Tupmountukova E.E., Coupino A.П., Eputauamno H.B. Быстрый метод решения уравнений агрегационно-фрагментационной кинетики типа уравнений Смолуховского // Вычисл. методы и программирование. 2014. Т. 15. № 1. С. 1–8.
  14. Matveev S.A., Smirnov A.P., Tyryshnikov E.E. A fast numerical method for the Cauchy problem for the Smoluchowski equation // J. Comput. Phys. 2015. V. 282. P. 23–32.
  15. Tyryshnikov E.E. A brief introduction to numerical analysis. Springer Science & Business Media, 1997.
  16. Пененко А.В., Сашкова А.Б. Идентификация источника в уравнении Смолуховского с использованием ансамбля решений сопряженного уравнения // Сиб. журн. вычисл. матем. 2020. Т. 23. № 2. С. 183–199.
  17. Penenko A.V. A Newton–Kantorovich method in inverse source problems for production-destruction models with time series-type measurement data // Numer. Analyse. Appl. 2019. V. 12. P. 51–69.
  18. Шутаев В.П. Операторы управления и итерационные алгоритмы в задачах вариационного усвоения данных. М.: Наука, 2001.
  19. Armijo L. Minimization of functions having Lipschitz continuous first partial derivatives // Pacific J. Math. 1966. V. 16. № 1. P. 1–3.
  20. Wolfe P. Convergence conditions for ascent methods // SIAM Rev. 1969. V. 11. № 2. P. 226–235.
  21. Желиков Д.А., Tupmountukova E.E. Параллельная реализация матричного крестового метода // Вычисл. методы и программирование. 2015. Т. 16. С. 369–375.
  22. Osinsky A. Polynomial time p-locally maximum volume search // Calcolo. 2023. V. 60. № 3. P. 42.
  23. Zamarashkin N.L., Osinsky A.I. On the accuracy of cross and column low-rank maxvol approximations in average // Comput. Math. and Math. Phys. 2021. V. 61. № 5. P. 786–798.
  24. Tyryshnikov E.E. Piecewise separable matrices // Calcolo. 2005. V. 42. № 3–4. P. 243–248.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».