Увеличение ацетилирования гистонов способствует восстановлению слабой отставленной памяти у крыс

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Согласно современным представлениям ингибиторы гистондеацетилаз (ГДАЦ) способны улучшать память у различных видов животных. Однако до сих пор не ясно, может ли повышенное ацетилирование гистонов способствовать улучшению слабой отставленной памяти у крыс. Таким образом, целью настоящего исследования было изучение способности ингибитора ГДАЦ бутирата натрия (БН) улучшать слабую отставленную память о страхе у крыс. Чтобы оценить способность ингибитора ГДАЦ БН улучшать отставленную память, мы сравнили поведение двух лабораторных линий крыс, Wistar и Long-Evans, в задаче условно-рефлекторного страха через шесть месяцев после обучения до и после введения БН. Мы обнаружили, что животные демонстрировали хорошую обстановочную память через 24 ч после окончания обучения, полное отсутствие памяти через 6 мес. и улучшенную условно-рефлекторную память после введения БН без дополнительного обучения. Более того, полученные данные продемонстрировали, что обе линии крыс показали одинаковое снижение реакции замирания с течением времени, а ингибирование ГДАЦ улучшало слабую память у обеих линий. Кроме того, ослабление и восстановление памяти у самцов полностью соответствовало изменениям памяти у самок крыс. Эти результаты показывают, что ингибирование ГДАЦ оказывает одинаковый “восстанавливающий” эффект на слабую отставленную условно-рефлекторную память о страхе, независимо от линии и пола крыс.

Об авторах

А. Х. Винарская

Федеральное государственное бюджетное учреждение науки Институт высшей нервной деятельности
и нейрофизиологии РАН

Email: lucky-a89@mail.ru
Россия, Москва

П. М. Балабан

Федеральное государственное бюджетное учреждение науки Институт высшей нервной деятельности
и нейрофизиологии РАН

Email: lucky-a89@mail.ru
Россия, Москва

А. Б. Зюзина

Федеральное государственное бюджетное учреждение науки Институт высшей нервной деятельности
и нейрофизиологии РАН

Автор, ответственный за переписку.
Email: lucky-a89@mail.ru
Россия, Москва

Список литературы

  1. Alarcon J.M., Malleret G., Touzani K., Vronskaya S., Ishii S., Kandel E.R., Barco A. Chromatin acetylation, memory, and LTP are impaired in CBP+/− mice: a model for the cognitive deficit in Rubinstein-Taybi syndrome and its amelioration. Neuron. 2004. 42 (6): 947–959.
  2. Albo Z., Gräff J. The mysteries of remote memory. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 2018. 373 (1742): 20170029.
  3. Ameneiro L., Zalcman G., Robles A., Romano A. Characteristics of the reminder that triggers object recognition memory reconsolidation in mice. Neurosci. 2022. 497: 206–214.
  4. An X., Zhang F., Liu Y., Yang P., Yu D. Remote fear memory is sensitive to reconditioning. Behav. Brain. Res. 2019. 359: 723–730.
  5. Beatty W.W. Hormonal organization of sex differences in play fighting and spatial behavior. Prog. Brain. Res. 1984. 60: 320–324.
  6. Besnard A., Caboche J., Laroche S. Reconsolidation of memory: a decade of debate. Prog. Neurobiol. 2012. 99 (1): 61–80.
  7. Besnard A., Caboche J., Laroche S. Recall and reconsolidation of contextual fear memory: differential control by ERK and Zif268 expression dosage. PLoS One. 2013. 8 (8): e72006.
  8. Blank M., Werenicz A., Velho L.A., Pinto D.F., Fedi A.C., Lopes M.W., Peres T.V., Leal R.B., Dornelles A.S., Roesler R. Enhancement of memory consolidation by the histone deacetylase inhibitor sodium butyrate in aged rats. Neurosci. Lett. 2015. 594: 76–81.
  9. Bredy T.W., Barad M. The histone deacetylase inhibitor valproic acid enhances acquisition, extinction, and reconsolidation of conditioned fear. Learn. Mem. 2008. 15 (1): 39–45.
  10. Brownell J.E., Allis C.D. Special HATs for special occasions: linking histone acetylation to chromatin assembly and gene activation. Curr. Opin. Genet. Dev. 1996. 6 (2): 176–184.
  11. Bustos S.G., Maldonado H., Molina V.A. Disruptive effect of midazolam on fear memory reconsolidation: decisive influence of reactivation time span and memory age. Neuropsychopharmacology. 2009. 34 (2): 446–457.
  12. Chen S., Cai D., Pearce K., Sun P.Y., Roberts A.C., Glanzman D.L. Reinstatement of long-term memory following erasure of its behavioral and synaptic expression in Aplysia. ELife. 2014. 3: e03896.
  13. Chen Y., Barsegyan A., Nadif Kasri N., Roozendaal B. Basolateral amygdala noradrenergic activity is required for enhancement of object recognition memory by histone deacetylase inhibition in the anterior insular cortex. Neuropharmacology. 2018. 141: 32–41.
  14. Choi J.H., Sim S.E., Kim J.I., Choi D.I., Oh J., Ye S., Lee J., Kim T., Ko H.G., Lim C.S., Kaang B.K. Interregional synaptic maps among engram cells underlie memory formation. Science. 2018. 360 (6387): 430–435.
  15. Colon L.M., Poulos A.M. Contextual processing elicits sex differences in dorsal hippocampus activation following footshock and context fear retrieval. Behav. Brain. Res. 2020. 393: 112771.
  16. Costanzi M., Cannas S., Saraulli D., Rossi-Arnaud C., Cestari V. Extinction after retrieval: effects on the associative and nonassociative components of remote contextual fear memory. Learn. Mem. 2011. 18 (8): 508–518.
  17. Davenport J., Harquist W., Rankin G. Symmetrical maze: an automated closed field test series for rats. Behav. Res. Methods Instrum. 1970. 2: 112–118.
  18. Federman N., Fustiñana M., Romano A. Histone acetylation is recruited in consolidation as a molecular feature of stronger memories. Learn. Mem. 2009. 16 (10): 600–606.
  19. Frankland P.W., Bontempi B., Talton L.E., Kaczmarek L., Silva A.J. The involvement of the anterior cingulate cortex in remote contextual fear memory. Science. 2004. 304 (5672): 881–883.
  20. Frankland P.W., Bontempi B. The organization of recent and remote memories. Nat. Rev. Neurosci. 2005. 6 (2): 119–130.
  21. Gökçek-Saraç Ç., Wesierska M., Jakubowska-Doğru E. Comparison of spatial learning in the partially baited radial-arm maze task between commonly used rat strains: Wistar, Spargue-Dawley, Long-Evans, and outcrossed Wistar/Sprague-Dawley. Learn. Behav. 2015. 43 (1): 83–94.
  22. Gräff J., Joseph N.F., Horn M.E., Samiei A., Meng J., Seo J., Rei D., Bero A.W., Phan T.X., Wagner F., Holson E., Xu J., Sun J., Neve R.L., Mach R.H., Haggarty S.J., Tsai L.H. Epigenetic priming of memory updating during reconsolidation to attenuate remote fear memories. Cell. 2014. 156 (1–2): 261–276.
  23. Guan J.S., Haggarty S.J., Giacometti E., Dannenberg J.H., Joseph N., Gao J., Nieland T.J., Zhou Y., Wang X., Mazitschek R., Bradner J.E., DePinho R.A., Jaenisch R., Tsai L.H. HDAC2 negatively regulates memory formation and synaptic plasticity. Nature. 2009. 459 (7243): 55–60.
  24. Harker K.T., Whishaw I.Q. Place and matching-to-place spatial learning affected by rat inbreeding (Dark-Agouti, Fischer 344) and albinism (Wistar, Sprague-Dawley) but not domestication (wild rat vs. Long-Evans, Fischer-Norway). Behav. Brain Res. 2002. 34 (1–2): 467–477.
  25. Hawk J.D., Florian C., Abel T. Post-training intrahippocampal inhibition of class I histone deacetylases enhances long-term location memory. Learn. Mem. 2011. 18 (6): 367–370.
  26. Kim W.B., Cho J.H. Encoding of contextual fear memory in hippocampal-amygdala circuit. Nat. Commun. 2020. 11 (1): 1382.
  27. Kim J.J., Fanselow M.S. Modality-specific retrograde amnesia of fear. Science. 1992. 256 (5057): 675–677.
  28. Ko H.G., Kim J.I., Sim S.E., Kim T., Yoo J., Choi S.L., Baek S.H., Yu W.J., Yoon J.B., Sacktor T.C., Kaang B.K. The role of nuclear PKMζ in memory maintenance. Neurobiol. Learn. Mem. 2016. 135: 50–56.
  29. Lee J.H., Kim W.B., Park E.H., Cho J.H. Neocortical synaptic engrams for remote contextual memories. Nat. Neurosci. 2023. 26 (2): 259–273.
  30. Levenson J.M., O’Riordan K.J., Brown K.D., Trinh M.A., Molfese D.L., Sweatt J.D. Regulation of histone acetylation during memory formation in the hippocampus. J. Biol. Chem. 2004. 279 (39): 40 545–40 559.
  31. Levenson J.M., Sweatt J.D. Epigenetic mechanisms in memory formation. Nat. Rev. Neurosci. 2005. 6 (2): 108–118.
  32. Marks P.A., Richon V.M., Miller T., Kelly W.K. Histone deacetylase inhibitors. Adv. Cancer Res. 2004. 91: 137–168.
  33. Marks P.A., Dokmanovic M. Histone deacetylase inhibitors: discovery and development as anticancer agents. Expert. Opin. Investig. Drugs. 2005. 14 (12): 1497–1511.
  34. Marmonstein R., Zhou M.M. Writers and readers of histone acetylation: structure, mechanism, and inhibition. Cold Spring Harb. Perspect. Biol. 2014. 6 (7): a018762.
  35. McQuown S.C., Barrett R.M., Matheos D.P., Post R.J., Rogge G.A., Alenghat T., Mullican S.E., Jones S., Rusche J.R., Lazar M.A., Wood M.A. HDAC3 is a critical negative regulator of long-term memory formation. J. Neurosci. 2011. 31 (2): 764–774.
  36. Misanin J.R., Miller R.R., Lewis D.J. Retrograde amnesia produced by electroconvulsive shock after reactivation of a consolidated memory trace. Science. 1968. 160 (3827): 554–555.
  37. Monsey M.S., Ruiz S.G., Taylor J.R. Regulation of garcinol on histone acetylation in the amygdala and on the reconsolidation of a cocaine-associated Memory. Front. Behav. Neurosci. 2020. 13: 281.
  38. Nader K., Schafe G.E., Le Doux J.E. Fear memories require protein synthesis in the amygdala for reconsolidation after retrieval. Nature. 2000. 406 (6797): 722–726.
  39. Parvez K., Stewart O., Sangha S., Lukowiak K. Boosting intermediate-term into long-term memory. J. Exp. Biol. 2005. 208 (Pt 8): 1525–1536.
  40. Parvez K., Moisseev V., Lukowiak K. A context-specific single contingent-reinforcing stimulus boosts intermediate-term memory into long-term memory. Eur. J. Neurosci. 2006. 24 (2): 606–616.
  41. Pearce K., Cai D., Roberts A.C., Glanzman D.L. Role of protein synthesis and DNA methylation in the consolidation and maintenance of long-term memory in Aplysia. Elife. 2017. 6: e18299.
  42. Peixoto L., Abel T. The role of histone acetylation in memory formation and cognitive impairments. Neuropsychopharmacology. 2013. 38 (1): 62–76.
  43. Penney J., Tsai L.H. Histone deacetylases in memory and cognition. Sci. Signal. 2014. 7 (355): re12.
  44. Ramirez-Mejia G., Gil-Lievana E., Urrego-Morales O., Soto-Reyes E., Bermúdez-Rattoni F. Class I HDAC inhibition improves object recognition memory consolidation through BDNF/TrkB pathway in a time-dependent manner. Neuropharmacology. 2021. 187: 108493.
  45. Roof R.L., Havens M.D. Testosterone improves maze performance and induces development of a male hippocampus in females. Brain. Res. 1992. 572 (1–2): 310–313.
  46. Roof R.L., Havens M.D. Neonatal exogenous testosterone modifies sex difference in radial arm maze and Morris water maze performance in prepubescent and adult rats. Behav. Brain. Res. 1993. 53 (1–2): 1–10.
  47. Roof R.L., Stein D.G. Gender differences in Morris water maze performance depend on task parameters. Physiol. Behav. 1999. 68 (1–2): 81–86.
  48. Roozendaal B., Hernandez A., Cabrera S.M., Hagewoud R., Malvaez M., Stefanko D.P., Haettig J., Wood M. Membrane-associated glucocorticoid activity is necessary for modulation of long-term memory via chromatin modification. J. Neurosci. 2010. 30 (14): 5037–5046.
  49. Sartor G.C., Malvezzi A.M., Kumar A., Andrade N.S., Wiedner H.J., Vilca S.J., Janczura K.J., Bagheri A., Al-Ali H., Powell S.K., Brown P.T., Volmar C.H., Foster T.C., Zeier Z., Wahlestedt C. Enhancement of BDNF expression and memory by HDAC inhibition requires BET bromodomain reader proteins. J. Neurosci. 2019. 39 (4): 612–626.
  50. Seto E., Yoshida M. Erasers of histone acetylation: the histone deacetylase enzymes. Cold Spring Harb. Perspect. Biol. 2014. 6 (4): a018713.
  51. Stefanko D.P., Barrett R.M., Ly A.R., Reolon G.K., Wood M.A. Modulation of long-term memory for object recognition via HDAC inhibition. Proc. Natl. Acad. Sci. USA. 2009. 106 (23): 9447–9452.
  52. Terranova J.I., Yokose J., Osanai H., Ogawa S.K., Kitamura T. Systems consolidation induces multiple memory engrams for a flexible recall strategy in observational fear memory in male mice. Nat. Commun. 2023. 14 (1): 3976.
  53. Trott J.M., Krasne F.B., Fanselow M.S. Sex differences in contextual fear learning and generalization: a behavioral and computational analysis of hippocampal functioning. Learn. Mem. 2022. 29 (9): 283–296.
  54. Vecsey C.G., Hawk J.D., Lattal K.M., Stein J.M., Fabian S.A., Attner M.A., Cabrera S.M., Mc Donough C.B., Brindle P.K., Abel T., Wood M.A. Histone deacetylase inhibitors enhance memory and synaptic plasticity via CREB:CBP-dependent transcriptional activation. J. Neurosci. 2007. 27 (23): 6128–6140.
  55. Villain H., Florian C., Roullet P. HDAC inhibition promotes both initial consolidation and reconsolidation of spatial memory in mice. Sci. Rep. 2016. 6: 27015.
  56. Vinarskaya A.K., Balaban P.M., Roshchin M.V., Zuzina A.B. Sodium butyrate as a selective cognitive enhancer for weak or impaired memory. Neurobiol. Learn. Mem. 2021. 180: 107414.
  57. Williams C.L., Barnett A.M., Meck W.H. Organizational effects of early gonadal secretions on sexual differentiation in spatial memory. Behav. Neurosci. 1990. 104 (1): 84–97.
  58. Williams C.L., Meck W.H. The organizational effects of gonadal steroids on sexually dimorphic spatial ability. Psychoneuroendoerinology. 1991. 16 (1–3): 155–176.
  59. Zola-Morgan S.M., Squire L.R. The primate hippocampal formation: evidence for a time-limited role in memory storage. Science. 1990. 250 (4978): 288–290.
  60. Zuzina A.B., Vinarskaya A.K., Balaban P.M. Increase in serotonin precursor levels reinstates the context memory during reconsolidation. Invert. Neurosci. 2019. 19 (3): 8.
  61. Zuzina A.B., Vinarskaya A.Kh., Balaban P.M. Histone deacetylase inhibitors rescue the impaired memory in terrestrial snails. J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 2020. 206 (4): 639–649.

Дополнительные файлы


© A.Kh. Vinarskaya, P.M. Balaban, A.B. Zuzina, 2023

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».