Hypoxic preconditioning in rats with low and high prepulse inhibition of acoustic startle is implemented through topographically different sensory inputs. Working hypothesis

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The neurotransmitter and network mechanisms of hypoxic preconditioning are practically unknown. Previously, in rats, we identified the key role of the hippocampus and its cholinergic projections in the preconditioning mechanism of single-exposure of moderate hypobaric hypoxia (HBH) based on the association between the efficiency of HBH and the magnitude of Prepulse Inhibition of Acoustic Startle (PPI). This study presents the first data on PPI-dependent neuronal networks of hypoxic preconditioning and their cholinergic components. The activity of synaptic choline acetyltransferase (ChAT), an indicator of cholinergic function, was used for a correlation analysis of ChAT response to HBH in the hippocampus, cerebral cortex, and caudal brainstem in animals with different levels of PPI. In rats with PPI < 40%, ChAT activity was correlated in the hippocampus, cortex and caudal brainstem, while in rats with PPI > 40% in the hippocampus and cortex. It is hypothesized that HBH is realized through topographically different sensory inputs, namely through respiratory neurons of the brainstem in rats with low PPI and respiratory neurons of the olfactory epithelium in rats with high PPI.

全文:

受限制的访问

作者简介

E. Zakharova

Institute of General Pathology and Pathophysiology

编辑信件的主要联系方式.
Email: zakharova-ei@yandex.ru
俄罗斯联邦, Moscow

Z. Storozheva

Federal Research Center for Original and Promising Biomedical and Pharmaceutical Technologies

Email: zakharova-ei@yandex.ru
俄罗斯联邦, Moscow

A. Proshin

Federal Research Center for Original and Promising Biomedical and Pharmaceutical Technologies

Email: zakharova-ei@yandex.ru
俄罗斯联邦, Moscow

M. Monakov

Institute of General Pathology and Pathophysiology

Email: zakharova-ei@yandex.ru
俄罗斯联邦, Moscow

A. Dudchenko

Institute of General Pathology and Pathophysiology

Email: zakharova-ei@yandex.ru
俄罗斯联邦, Moscow

参考

  1. Akopyan N.S., Baklavadzhyan O.G., Karapetyan M.A. Effects of acute hypoxia on the EEG and impulse activity of the neurons of variousconelly brain structures in rats. Neurosci. Behav. Physiol. 1984. 14 (5): 405–411.
  2. AlQot H.E., Rylett R.J. A novel transgenic mouse model expressing primate-specific nuclear choline acetyltransferase: insights into potential cholinergic vulnerability. Sci Rep. 2023. 13 (1): 3037.
  3. Ando S., Komiyama T., Sudo M., Higaki Y., Ishida K., Costello J.T., Katayama K. The interactive effects of acute exercise and hypoxia on cognitive performance: A narrative review. Scand. J. Med. Sci. Sports. 2020. 30 (3): 384–398.
  4. Appelbaum L.G., Shenasa M.A., Stolz L., Daskalakis Z. Synaptic plasticity and mental health: methods, challenges and opportunities. Neuropsychopharmacology. 2022. 48: 113–120.
  5. Ashhad S., Kam K., Del Negro C.A., Feldman J.L. Breathing Rhythm and Pattern and Their Influence on Emotion. Annu. Rev. Neurosci. 2022. 45: 223–247.
  6. Bagwe P., Sathaye S. Significance of Choline Acetyltransferase Enzyme in Tackling Neurodegenerative Diseases. Current Molecular Biology Reports. 2022. 8: 9–22.
  7. Bautista T.G., Sun Q.J., Zhao W.J., Pilowsky P.M. Cholinergic inputs to laryngeal motoneurons functionally identified in vivo in rat: A combined electrophysiological and microscopic study. J. Comp. Neurol. 2010. 518: 4903–4916.
  8. Biagioni F., Gaglione A., Giorgi F.S., Bucci D., Moyanova S., De. Fusco A., Madonna, M., Fornai F. Degeneration of cholinergic basal forebrain nuclei after focally evoked status epilepticus. Neurobiol. Dis. 2019. 121: 76–94.
  9. Bleymehl K., Pérez-Gómez A., Omura M., Moreno-Pérez A., Macías D., Bai Z., Johnson R.S., Leinders-Zufall T., Zufall F., Mombaerts P.A. Sensor for Low Environmental Oxygen in the Mouse Main Olfactory Epithelium. Neuron. 2016. 92: 1196–1203.
  10. Carey R.M., Verhagen J.V., Wesson D.W., Pírez N., Wachowiak M. Temporal structure of receptor neuron input to the olfactory bulb imaged in behaving rats. J. Neurophysiol. 2009. 101: 1073–1088.
  11. Cheng Q., Lamb P., Stevanovic K., Bernstein B.J., Fry S.A., Cushman J.D., Yakel J.L. Differential signalling induced by α7 nicotinic acetylcholine receptors in hippocampal dentate gyrus in vitro and in vivo. J. Physiol. 2021. 599 (20): 4687–4704.
  12. Connelly T., Yu .Y., Grosmaitre X., Wang J., Santarelli L.C., Savigner A., Qiao X., Wang Z., Storm D.R., Ma. M. G protein-coupled odorant receptors underlie mechanosensitivity in mammalian olfactory sensory neurons. Proc. Natl. Acad. Sci. U S A. 2015. 112: 590–595.
  13. Das M., Das D.K. Molecular Mechanism of Preconditioning. IUBMB Life. 2008. 60: 199–203.
  14. de Curtis M., Uva L., Lévesque M., Biella G., Avoli M. Piriform cortex ictogenicity in vitro. Exp. Neurol. 2019. 321: 113014.
  15. Dudchenko A.M., Zakharova E.I., Storozheva Z.I. Method for Predicting the Limit of Resistance of Animals to Severe Hypoxia after Hypoxic Preconditioning. RF Patent 2571603. 4 July 2014.
  16. Dunbar G.L., Rylett R.J., Schmidt B.M., Sinclair R.C., Williams L.R. Hippocampal choline acetyltransferase activity correlates with spatial learning in aged rats. Brain Res. 1993. 604 (1–2): 266–272.
  17. Fonnum F. Radiochemical microassays for the determination of choline acetyltransferase and acetylcholinesterase activities. Biochem. J. 1969. 115: 465–472.
  18. Fontanini A., Spano P., Bower J.M.Ketamine-Xylazine-induced slow (< 1.5 Hz) oscillations in the rat piriform (olfactory) cortex are functionally correlated with respiration. J. Neurosci. 2003. 23: 7993–8001.
  19. Gavrilova S.A., Samojlenkova N.S., Pirogov Yu.A., Khudoerkov R.M., Koshelev V.B. Neuroprotective effect of hypoxic preconditioning in the rat brain with focal ischemia. Pathogenesis. 2008. 6 (3): 13–17. In Russian
  20. Girin B., Juventin M., Garcia S., Lefèvre L., Amat C., Fourcaud-Trocmé N., Buonviso N. The deep and slow breathing characterizing rest favors brain respiratory-drive. Sci. Rep. 2021. 11 (1): 7044.
  21. Gu .Z., Yakel J.L.Cholinergic Regulation of Hippocampal Theta Rhythm. Biomedicines. 2022. 10: 745.
  22. Heck D.H., Kozma R., Kay L.M. The rhythm of memory: How breathing shapes memory function. J. Neurophysiol. 2019. 122: 563–571.
  23. Hummos A., Nair S.S. An integrative model of the intrinsic hippocampal theta rhythm. PLoS ONE. 2017. 12: e0182648.
  24. Jones B.E. Immunohistochemical study of choline acetyltransferase immunoreactive processes and cells innervating the pontomedullary reticular formation in the rat. J. Comp. Neurol. 1990. 295: 485–514.
  25. Juventin M., Ghibaudo V., Granget J., Amat C., Courtiol E., Buonviso N. Respiratory influence on brain dynamics: the preponderant role of the nasal pathway and deep slow regime. Pflugers Arch. 2023. 475 (1): 23–35.
  26. Karalis N., Sirota A. Breathing coordinates cortico-hippocampal dynamics in mice during offline states. Nat. Commun. 2022. 13: 467.
  27. Kirstein M., Cambrils A., Segarra A., Melero A., Varea E. Cholinergic Senescence in the Ts65Dn Mouse Model for Down Syndrome. Neurochem Res. 2022. 47 (10), 3076–3092.
  28. Kitchigina V.F. Mechanisms of the regularion and the functional significance of the Theta-Rhytm. Roles of serotonergic and noradrenergic systems. Zh. Vyssh. Nerv. Deiat. 2004. 54: 101–119. In Russian
  29. Kobzar A.I. Applied Mathematical Statistics. For Engineers and Scientists. Moscow: FIZMATLIT, 2006. 816 p. In Russian
  30. Koike K., Yoo S.J., Bleymehl K., Omura M., Zapiec B., Pyrski M. et al. Danger perception and stress response through an olfactory sensor for the bacterial metabolite hydrogen sulfide. Neuron. 2021. 109 (15): 2469–2484.e7.
  31. Lara-González E., Padilla-Orozco M., Fuentes-Serrano A., Bargas J., Duhne M. Translational neuronal ensembles: Neuronal microcircuits in psychology, physiology, pharmacology and pathology. Front. Syst. Neurosci. 2022. 16: 979680.
  32. Liu H., Shi R., Liao R., Liu Y., Che J., Bai Z., Cheng N., Ma H. Machine Learning Based on Event-Related EEG of Sustained Attention Differentiates Adults with Chronic High-Altitude Exposure from Healthy Controls. Brain Sci. 2022 12 (12):1677.
  33. Lockmann A.L., Laplagne D.A., Leão R.N., Tort A.B. A Respiration-Coupled Rhythm in the Rat Hippocampus Independent of Theta and Slow Oscillations. J. Neurosci. 2016. 36: 5338–5352.
  34. Lowry O.H., Rosenbrough N.J., Farr A.L., Randall R.J. Protein measurement with the Folin phenol reagent. Biol. Chem. 1959. 193: 265–275.
  35. Lukyanova L.D., Germanova E.L., Kopaladze R.A. Development of resistance of an organism under various conditions of hypoxic preconditioning: role of the hypoxic period and reoxygenation. Bull. Exp. Biol. Med. 2009. 147: 400–404.
  36. Lukyanova L.D., Germanova E.L,. Tsibina T.A., Kopaladze R.A., Dudchenko A.M. Efficiency and mechanism for different regimens of hypoxic training: The possibility of optimization of hypoxic therapy. Pathogenesis, 2008, 6: 32–36. In Russian
  37. Lykhmus O., Kalashnyk O., Uspenska K., Horid’ko T., Kosyakova H., Komisarenko S., Skok M. Different Effects of Nicotine and N-Stearoyl-ethanolamine on Episodic Memory and Brain Mitochondria of α7 Nicotinic Acetylcholine Receptor Knockout Mice. Biomolecules. 2020. 10 (2): 226.
  38. Ma X., Zhang Y., Wang L., Li .N., Barkai E., Zhang X., Lin L., Xu J. The Firing of Theta State-Related Septal Cholinergic Neurons Disrupt Hippocampal Ripple Oscillations via Muscarinic Receptors. J. Neurosci. 2020. 40 (18): 3591–3603.
  39. Maslov L.N., Lishmanov Yu.B., Emelianova T.V., Prut D.A., Kolar F., Portnichenko A.G. et al. Hypoxic Preconditioning as Novel Approach to Prophylaxis of Ischemic and Reperfusion Damage of Brain and Heart. Angiol. Sosud. Khir. 2011; 17 (3): 27–36. In Russian
  40. Monmaur P., Fage D., M’Harzi M., Delacour J., Scatton B.Decrease in both choline acetyltransferase activity and EEG patterns in the hippocampal formation of the rat following septal macroelectrode implantation. Brain Res. 1984. 293 (1): 178–183.
  41. Müller C., Remy S. Septo-hippocampal interaction. Cell Tissue Res. 2018. 373 (3): 565–575.
  42. Navarrete-Opazo A., Mitchell G.S. Therapeutic potential of intermittent hypoxia: a matter of dose. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2014. 307 (10): R1181–R1197.
  43. Obermayer J., Luchicchi A., Heistek T.S., de Kloet S.F., Terra H., Bruinsma B. et al. Prefrontal cortical ChAT-VIP interneurons provide local excitation by cholinergic synaptic transmission and control attention. Nat. Commun. 2019. 10: 5280.
  44. Paxinos G., Watson Ch. Rat Brain in Stereotaxic Coordinates, Fourth Edition, San Diego: Academic Press, 1998, 474 p.
  45. Phillips M.E., Sachdev R.N., Willhite D.C., Shepherd G.M. Respiration drives network activity and modulates synaptic and circuit processing of lateral inhibition in the olfactory bulb. J. Neurosci. 2012. 32: 85–98.
  46. Radhakrishnan S., Martin C.A., Dhayanithy G., Reddy M.S., Rela M., Kalkura S.N., Sellathamby S. Hypoxic Preconditioning Induces Neuronal Differentiation of Infrapatellar Fat Pad Stem Cells through Epigenetic Alteration. ACS Chem. Neurosci. 2021. 12: 704–718.
  47. Ramadan M.Z., Ghaleb A.M., Ragab A.E. Using Electroencephalography (EEG) Power Responses to Investigate the Effects of Ambient Oxygen Content, Safety Shoe Type, and Lifting Frequency on the Worker’s Activities. Biomed. Res. Int. 2020: 7956037.
  48. Rybnikova E.A., Nalivaeva N.N., Zenko M.Y., Baranova K.A. Intermittent Hypoxic Training as an Effective Tool for Increasing the Adaptive Potential, Endurance and Working Capacity of the Brain. Front. Neurosci. 2022. 16: 941740.
  49. Sadigh-Eteghad S., Vatandoust S.M., Mahmoudi J., Rahigh Aghsan S., Majdi A. Cotinine ameliorates memory and learning impairment in senescent mice. Brain Res. Bull. 2020. 164: 65–74.
  50. Sampath D., Sathyanesan M., Newton S.S. Cognitive dysfunction in major depression and Alzheimer’s disease is associated with hippocampal-prefrontal cortex dysconnectivity. Neuropsychiatr. Dis. Treat. 2017. 13: 1509–1519.
  51. Salimi M., Ayene F., Parsazadegan T., Nazari M., Jamali Y., Raoufy M.R. Nasal airflow promotes default mode network activity. Respir. Physiol. Neurobiol. 2023. 307:103981.
  52. Sawada M., Sato M. The effect of dimethyl sulfoxide on the neuronal excitability and cholinergic transmission in Aplysia ganglion cells. Ann. N. Y. Acad. Sci. 1975. 243: 337–357.
  53. Semba K., Reiner P.B., McGeer E.G., Fibiger H.C. Brainstem projecting neurons in the rat basal forebrain: Neurochemical, topographical, and physiological distinctions from cortically projecting cholinergic neurons. Brain Res. Bull. 1989. 22: 501–509.
  54. Shenkarev Z.O., Shulepko M.A., Bychkov M.L., Kulbatskii D.S., Shlepova O.V., Vasilyeva N.A. et al. Water-soluble variant of human Lynx1 positively modulates synaptic plasticity and ameliorates cognitive impairment associated with α7–nAChR dysfunction. J. Neurochem. 2020. 155 (1):45–61.
  55. Sheriff A., Pandolfi G., Nguyen V.S., Kay L.M. Long-Range Respiratory and Theta Oscillation Networks Depend on Spatial Sensory Context. J. Neurosci. 2021. 41: 9957–9970.
  56. Vaaga C.E., Westbrook G.L. Parallel processing of afferent olfactory sensory information. J. Physiol. 2016. 594: 6715–6732.
  57. Wirt R.A., Hyman J.M. Integrating Spatial Working Memory and Remote Memory: Interactions between the Medial Prefrontal Cortex and Hippocampus. Brain Sci. 2017. 7 (4): 43.
  58. Wood G.K., Tomasiewicz H., Rutishauser U., Magnuson T., Quirion R., Rochford J., Srivastava L.K. NCAM-180 knockout mice display increased lateral ventricle size and reduced prepulse inhibition of startle. Neuroreport. 1998. 9: 461–4666.
  59. Woolf N.J., Butcher L.L. Cholinergic systems in the rat brain: IV. Descending projections of the pontomesencephalic tegmentum. Brain Res. Bull. 1989. 23: 519–540.
  60. Yang Y., Gritton H., Sarter M., Aton S.J., Booth V., Zochowski M. Theta-gamma coupling emerges from spatially heterogeneous cholinergic neuromodulation. PLoS Comput. Biol. 2021. 17: e1009235.
  61. Yoder R.M., Pang K.C. Involvement of GABAergic and cholinergic medial septal neurons in hippocampal theta rhythm. Hippocampus. 2005. 15: 381–392.
  62. Zakharova E.I., Dudchenko A.M. Hypoxic Preconditioning Eliminates Differences in the Innate Resistance of Rats to Severe Hypoxia. Journal of Biomedical Science and Engineering. 2016. 9: 563–575.
  63. Zakharova E.I., Dudchenko A.M. Synaptic soluble and membrane-bound choline acetyltransferase as a marker of cholinergic function in vitro and in vivo. Neurochemistry. Ed. Heinbockel T. Rijeka: InTechOpen, 2014. 5: 143–178 pp.
  64. Zakharova E.I., Dudchenko A.M., Germanova E.L. Effects of preconditioning on the resistance to acute hypobaric hypoxia and their correction with selective antagonists of nicotinic receptors. Bull. Exp. Biol. Med. 2011. 151 (2): 179–182.
  65. Zakharova E.I., Proshin A.T., Monakov M.Y., Dudchenko A.M. Cholinergic Internal and Projection Systems of Hippocampus and Neocortex Critical for Early Spatial Memory Consolidation in Normal and Chronic Cerebral Hypoperfusion Conditions in Rats with Different Abilities to Consolidation: The Role of Cholinergic Interneurons of the Hippocampus. Biomedicines. 2022. 10: 1532.
  66. Zakharova E.I., Proshin A.T., Monakov M.Y., Dudchenko A.M. Effect of Intrahippocampal Administration of α7 Subtype Nicotinic Receptor Agonist PNU-282987 and Its Solvent Dimethyl Sulfoxide on the Efficiency of Hypoxic Preconditioning in Rats. Molecules. 2021. 26: 7387.
  67. Zakharova E.I., Storozheva E.I., Proshin A.T., Monakov M.Y., Dudchenko A.M. The Acoustic Sensorimotor Gating Predicts the Efficiency of Hypoxic Preconditioning. Participation of the Cholinergic System in This Phenomenon. J. Biomed. Sci. Eng. 2018a. 11: 10–25.
  68. Zakharova E.I., Storozheva Z.I., Proshin A.T., Monakov M.Y., Dudchenko A.M. Hypoxic Preconditioning: The multiplicity of central neurotransmitter mechanisms and method of predicting its efficiency. Hypoxia and Anoxia. Eds. Das K.K., Biradar M.S., London: InTechOPEN, 2018b. 6: 95–131 pp.
  69. Zakharova E.I., Storozheva Z.I., Proshin A.T., Monakov M.Y., Dudchenko A.M. Opposite Pathways of Cholinergic Mechanisms of Hypoxic Preconditioning in the Hippocampus: Participation of Nicotinic α7 Receptors and Their Association with the Baseline Level of Startle Prepulse Inhibition. Brain Sci. 2020. 11: 12.
  70. Zenko M.Y., Rybnikova E.A.Cross Adaptation: from F.Z. Meerson to the Modern State of the Problem. Part 1. Adaptation, Cross-Adaptation and Cross-Sensitization. Usp. Fiziol. Nauk. 2019. 50 (4): 3–13. In Russian
  71. Zhou G., Olofsson J.K., Koubeissi M.Z., Menelaou G., Rosenow, J., Schuele S.U. et al. Human hippocampal connectivity is stronger in olfaction than other sensory systems. Prog. Neurobiol. 2021. 201: 102027.
  72. Zinchenko V.P., Gaidin S.G., Teplov I.Yu., Kosenkov A.M., Sergeev A.I., Dolgacheva L.P., Tuleuhanov S.T. Visualization, Properties, and Functions of GABAergic Hippocampal Neurons Containing Calcium-Permeable Kainate and AMPA Receptors. Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology. 2020. 14: 44–53.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Individual values of the synaptic ChAT activity in the control and HBH subgroups of rats with PPI values of <40% and >40%. Designations. The ChAT activity is presented in nmol ACh/1 min in 1 g wet weight of the corresponding brain structure. The software package STATISTICA 8.0 (StatSoft., USA) was used to visualize the data. I, hippocampus; II, cerebral cortex; III, caudal brainstem. C, the fraction of light synaptosomes. D, the fraction of heavy synaptosomes. Synaptic membranes, the subfraction of synaptic membranes. Synaptoplasm, the subfraction of the synaptoplasm. Control, the control subgroups of rats. HBH, the subgroups of rats after one-time moderate hypobaric hypoxia (85 mm Hg, equivalent to 11% O2, 60 min). N = 3 for each subgroup. *, the significant differences in ChAT activity values between the paired subfractions of rats with PPI < 40% and PPI > 40%, p < 0.05. #, the significant changes in the ChAT activity values after HBH were compared with the corresponding control subgroup, p < 0.05. Fisher’s exact test (FET criterion).

下载 (813KB)
3. Fig. 2. Individual values of the protein content in the control and HBH subgroups of rats with PPI values of <40% and >40%. Designations. The protein content is presented in mg in 1 g wet weight of the corresponding brain structure.The remaining designations are the same as those in Figure 1.

下载 (757KB)
4. Fig. 3. Conjugacy of HBH-initiated changes in the synaptic ChAT activity and Pr content in the hippocampus, cerebral cortex, and caudal brainstem in rats with PPI < 40%. Designations. The ChAT activity and Pr content values are represented as a percentage change (mean ± SEM%) relative to the values in the corresponding control subgroup, which were taken as 100%. Cortex, the cerebral cortex. Stem, the caudal brainstem. C and D, the fractions of light and heavy synaptosomes, respectively, as in Figure 1. SM, the synaptic membrane subfraction. Sp, the synaptoplasm subfraction. The SM and Sp indicators are shown in pairs according to their belonging to a synaptosome fraction. ChAT, top row, the ChAT activity. PROTEIN, bottom row, the Pr content. Accordingly, in each brain structure, changes in mChAT/mPr values are presented in SM, and changes in sChAT/ sPr values are presented in Sp. For better perception, the indicators of different brain structures (Cortex, Hippocampus, Stem) are presented in different colors (different shades of gray). In the Hippocampus, C, the SM column is highlighted in red in the ‘ChAT’ row, as it is a key indicator for the mechanism of hypoxic preconditioning. *, significant differences from the corresponding control subgroups, p < 0.05, n = 3, Fisher’s exact test (FET-criterion), which for ChAT is similar to the ‘#’ marker in Figure 1. Ovals represent a significant correlation between changes in ChAT activity and Pr content in a subfraction (an intrafractional association), Pearson’s test (r-criterion). Horizontal brackets indicate a significant correlation of indicator changes (ChAT or Pr) between different subfractions (an interfractional and interstructural coherence) according to Pearson’s test (r-criterion). +r/ -r, positive/negative correlation, respectively; r*/ r**/ r***, p < 0.05/ p < 0.02/ p < 0.01, respectively; n = 6 for each sample.

下载 (1MB)
5. Fig. 4. Conjugacy of HBH-initiated changes in the synaptic ChAT activity and Pr content in the hippocampus, cerebral cortex, and caudal brainstem in rats with PPI > 40%. The designations are the same as those in Figure 2.

下载 (1MB)
6. Fig. 5. Scheme of the sources of cholinergic influences in the cerebral cortex and hippocampus, as well as components of neural networks of hypoxic preconditioning. The scheme is based on the Rat Brain Atlas by Paxinos and Watson (Paxinos, Watson, 1998) and later data on the stereotaxic coordinates of the prefrontal cortex (Sampath et al., 2017; Wirt, Hyman, 2017). Designations. B, nucleus basalis magnocellularis. CA1, CA2, CA3, fields of the hippocampus. Caudal Brainstem, medulla oblongata + pons Varolii. Ent, entorhinal cortex. LDTg, laterodorsal tegmental nucleus. LC, locus coeruleus. MS, medial septal nucleus. mPFC, medial prefrontal cortex. OB, olfactory bulb. Pir, piriform cortex. PPTg, pedunculopontine tegmental nucleus. VDB, nucleus of the vertical limb of the diagonal band. Red ovals with short processes in the cerebral cortex and hippocampus, cholinergic interneurons (predominantly bipolar neurons). Red lines, cholinergic projections from the nuclei of the forebrain and tegmental nuclei of the midbrain. Black lines, projections of other neuromediation (most often glutamatergic). The arrows indicate a direction of projections to a target structure. Where known, a line thickness reflects the relative power of single-color projections. The scheme shows only the brain structures and connecting fibers that are mentioned in the text.

下载 (1MB)

版权所有 © Russian Academy of Sciences, 2024

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».