Lower limb muscle activity during neurointerface control: neurointerface based on motor imagery of feet dorsiflexion
- Authors: Reshetnikova V.V.1, Bobrova E.V.1, Grishin A.A.1, Vershinina E.A.1, Bogacheva I.N.1, Chsherbakova N.A.1, Isaev M.R.2,3, Bobrov P.D.2,3, Gerasimenko Y.P.1
-
Affiliations:
- Pavlov Institute of Physiology, Russian Academy of Sciences
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences
- Institute of Translational Medicine of Pirogov of Russian National Research Medical University
- Issue: Vol 75, No 3 (2025)
- Pages: 313–326
- Section: ФИЗИОЛОГИЯ ВЫСШЕЙ НЕРВНОЙ (КОГНИТИВНОЙ) ДЕЯТЕЛЬНОСТИ ЧЕЛОВЕКА
- URL: https://journal-vniispk.ru/0044-4677/article/view/294591
- DOI: https://doi.org/10.31857/S0044467725030041
- ID: 294591
Cite item
Abstract
Neurorehabilitation of motor functions using a neurointerface (BCI) with feedback is a modern promising area of research. However, there is very little data on muscle activity during the motor imagery of lower limb – an important aspect of rehabilitation. The EMG activity of the lower limb muscles was studied in 42 healthy participants which control BCI, based on kinesthetic motor imagery of dorsiflexion of the feet and supplemented by a robotic device for moving the limbs “Biokin” (mechanotherapy), activated in case of successful motor imagery. It is shown that BCI control leads to an increase in the activity (averaged all over the participants) of the muscle, whose movement provides an imaginary movement in reality – the tibialis anterior (TA). In addition, the activity of the gastrocnemius muscle – the antagonist of TA – increases, which is apparently associated with the instruction to imagine, but not to make a movement. Activation of the mechanical training device (AM) additionally increases TA EMG (up to 100-200%) and weakly but significantly (by 3–5%) reduces the activity of the thigh muscles (quadriceps and left biceps). Therefore, AM increases the targeting of the downward signal that occurs during the motor imagery. Muscle reactions to the motor imagery are individual. Thus, the use of BCI based on the motor imagery of dorsiflexion of the feet and the use of the mechanical training device, which ensures the closure of the feedback loop when imagining this movement, contributes to the targeted activation of TA – the muscle that provides dorsiflexion of the foot, which is important for the clinical rehabilitation of paretic foot movements.
Keywords
Full Text

About the authors
V. V. Reshetnikova
Pavlov Institute of Physiology, Russian Academy of Sciences
Author for correspondence.
Email: 3069@bk.ru
Russian Federation, St. Petersburg
E. V. Bobrova
Pavlov Institute of Physiology, Russian Academy of Sciences
Email: 3069@bk.ru
Russian Federation, St. Petersburg
A. A. Grishin
Pavlov Institute of Physiology, Russian Academy of Sciences
Email: 3069@bk.ru
Russian Federation, St. Petersburg
E. A. Vershinina
Pavlov Institute of Physiology, Russian Academy of Sciences
Email: 3069@bk.ru
Russian Federation, St. Petersburg
I. N. Bogacheva
Pavlov Institute of Physiology, Russian Academy of Sciences
Email: 3069@bk.ru
Russian Federation, St. Petersburg
N. A. Chsherbakova
Pavlov Institute of Physiology, Russian Academy of Sciences
Email: 3069@bk.ru
Russian Federation, St. Petersburg
M. R. Isaev
Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences; Institute of Translational Medicine of Pirogov of Russian National Research Medical University
Email: 3069@bk.ru
Russian Federation, Moscow; Moscow
P. D. Bobrov
Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences; Institute of Translational Medicine of Pirogov of Russian National Research Medical University
Email: 3069@bk.ru
Russian Federation, Moscow; Moscow
Yu. P. Gerasimenko
Pavlov Institute of Physiology, Russian Academy of Sciences
Email: 3069@bk.ru
Russian Federation, St. Petersburg
References
- Боброва Е.В., Решетникова В.В., Вершининa Е.А., Гришин А.А., Фролов А.А., Герасименко Ю.П. Межполушарная асимметрия и личностные характеристики пользователя мозг-компьютерного интерфейса при воображении движений рук. ДАН. 2020. 495(6): 558–561.
- Боброва Е.В., Решетникова В.В., Вершинина Е.А., Гришин А.А., Исаев М.Р., Бобров П.Д., Герасименко Ю.П. Зависимость обучения управлению мозг-компьютерным интерфейсом от личностных характеристик. Доклады РАН. Науки о жизни. 2022. 507(1): 68–73.
- Боброва Е.В., Решетникова В.В., Волкова К.В., Фролов А.А. Влияние эмоциональной устойчивости на успешность обучения управлению системой “интерфейс мозг-компьютер”. Журн. высш. нервн. деят. им. И.П.Павлова. 2017. 67 (4): 485–492.
- Боброва Е.В., Решетникова В.В., Гришин А.А., Вершинина Е.А., Богачёва И.Н., Щербакова Н.А., Исаев М.Р., Бобров П.Д., Герасименко Ю.П. Активность мышц нижних конечностей в условиях управления нейроинтерфейсом: нейроинтерфейс, основанный на воображении ходьбы. Журн. высш. нервн. деят. им. И.П.Павлова. 2024. Принята в печать.
- Боброва Е.В., Решетникова В.В., Гришин А.А., Вершинина Е.А., Исаев М.Р., Пляченко Д.Р., Бобров П.Д., Герасименко Ю.П. Анализ мозговой и мышечной активности при управлении кортико-спинальным нейроинтерфейсом. Журн. высш. нервн. деят. им. И.П.Павлова. 2023. 73(4): 510–523.
- Решетникова В.В., Боброва Е.В., Вершинина Е.А., Гришин А.А., Фролов А.А., Герасименко Ю.П. Зависимость успешности воображения движений правой и левой руки от личностных характеристик пользователей. Журн. высш. нервн. деят. им. И.П.Павлова. 2021. 71(6): 830–839.
- Alnajjar F., Zaier R., Khalid S., Gochoo M. Trends and technologies in rehabilitation of foot drop: A systematic review. Expert Rev. Med. Devices. 2020. 18(1): 31–46.
- Aoyama T., Kaneko F. The effect of motor imagery on gain modulation of the spinal reflex. Brain Res. 2011. 1372: 41–48.
- Barria P., Pino A., Tovar N., Gomez-Vargas D., Baleta K., Díaz C.A.R., Múnera M., Cifuentes C.A. BCI-based control for ankle exoskeleton T-FLEX: Comparison of visual and haptic stimuli with stroke survivors. Sensors. 2021. 21(19): 6431.
- Bobrova E.V., Reshetnikova V.V., Vershinina E.A., Grishin A.A., Bobrov P.D., Frolov A.A., Gerasimenko Y.P. Success of hand movement imagination depends on personality traits, brain asymmetry, and degree of handedness. Brain Sciences. 2021. 11: 853.
- Bonnet M., Decety J., Jeannerod M., Requin J. Mental simulation of an action modulates the excitability of spinal reflex pathways in man. Brain Res. Cogn. Brain Res. 1997. 5(3): 221–228.
- Carrere L.C., Escher L.G., Gentiletti G.G., Tabernig C. A foot motor imagery brain-computer interface with realistic visual feedback: preliminary evaluation in healthy and stroke subjects. Res. Biomed. Eng. 2021. 37: 595–604.
- Decety J., Jeannerod M., Durozard D., Baverel G. Central activation of autonomic effectors during mental simulation of motor actions in man. J. Physiol. 1993. 461: 549–563.
- Dickstein R., Gazit-Grunwald M., Plax M., Dunsky A., Marcovitz E. EMG activity in selected target muscles during imagery rising on tiptoes in healthy adults and poststroke hemiparetic patients. J. Mot. Behav. 2005. 37: 475–483.
- Do A.H., Wang P.T., King C.E., Abiri A., Nenadic Z. Brain-computer interface controlled functional electrical stimulation system for ankle movement. J. Neuroeng. Rehabil. 2011. 8: 49.
- Do A.H., Wang P.T., King C.E., Schombs A., Cramer S.C., Nenadic Z. Brain-computer interface controlled functional electrical stimulation device for foot drop due to stroke. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2012. 2012: 6414–6417.
- Epstein M.L. The relationship of mental imagery and mental rehearsal to performance of a motor task. Journal of Sport Psychology. 1980. 2(3): 211–220.
- Gandevia S.C., Wilson L.R., Inglis J.T., Burke D. Mental rehearsal of motor tasks recruits α-motoneurones but fails to recruit human fusimotor neurones selectively. The Journal of Physiology. 1997. 505: 259–266.
- Geiger D.E., Behrendt F., Schuster-Amft C. EMG muscle activation pattern of four lower extremity muscles during stair climbing, motor imagery, and robot-assisted stepping: a cross-sectional study in healthy individuals. Biomed. Res. Int. 2019. 2019: 9351689.
- Grosprêtre S., Lebon F., Papaxanthis C., Martin A. New evidence of corticospinal network modulation induced by motor imagery. J. Neurophysiol. 2016. 115(3): 1279–1288.
- Guillot A., Lebon F., Rouffet D., Champely S., Doyon J., Collet C. Muscular responses during motor imagery as a function of muscle contraction types. Int. J. Psychophysiol. 2007. 66(1): 18–27.
- Hashimoto R., Rothwell J. Dynamic changes in corticospinal excitability during motor imagery. Exp. Brain. Res. 1999. 125: 75–81.
- Jacobson E. Electrical measurements of neuromuscular states during mental activities. Am. J. Physiol. 1931. 96: 115–121.
- Jacobson E. Electrophysiology of mental activities. Am. J. Psychol. 1932. 44: 677–694.
- Jeunet C., N’Kaoua B., Lotte F. Advances in user-training for mental-imagery-based BCI control: Psychological and cognitive factors and their neural correlates. Prog. Brain. Res. 2016. 228: 3–35.
- Lebon F., Rouffet D., Collet C., Guillot A. Modulation of EMG power spectrum frequency during motor imagery. Neuroscience Letters. 2008. 435(3): 181–185.
- McCrimmon C.M., King C.E., Wang P.T., Cramer S.C., Nenadic Z., Do A.H. Brain-controlled functional electrical stimulation for lower-limb motor recovery in stroke survivors. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2014. 2014: 1247–1250.
- Mulder T., de Vries S., Zijlstra S. Observation, imagination and execution of an effortful movement: more evidence for a central explanation of motor imagery. Exp. Brain Res. 2005. 163: 344–351.
- Mulder T., Zijlstra S., Zijlstra W., Hochstenbach J. The role of motor imagery in learning a totally novel movement. Exp. Brain Res. 2004. 154: 211–217.
- Personnier P., Paizis C., Ballay Y., Papaxanthis C. Mentally represented motor actions in normal aging II. The influence of the gravito-inertial context on the duration of overt and covert arm movements. Behav. Brain. Res. 2008. 186(2): 273–283.
- Ranganathan V.K., Siemionow V., Liu J.Z., Sahgal V., Yue G.H. From mental power to muscle power – gaining strength by using mind. Neuropsychologia. 2004. 42: 944–956.
- Shaw W.A. The distribution of muscular action potentials during imaging. Psychol. Rec. 1938. 2: 195–216.
- Wehner T., Vogt S., Stadler M. Task-specific EMG-characteristics during mental training. Psychol. Res. 1984. 46(4): 389–401.
- Xu R., Jiang N., Mrachacz-Kersting N., Lin C., Asín Prieto G., Moreno J.C., Pons J.L., Dremstrup K., Farina D. A closed-loop brain-computer interface triggering an active ankle-foot orthosis for inducing cortical neural plasticity. IEEE Trans. Biomed. Eng. 2014. 61(7): 2092–2101.
Supplementary files
