Taxonomic diversity and biogeography of the snakes in the aralo-caspian basin

Cover Page

Cite item

Full Text

Abstract

Snake diversity of the Aralo-Caspian basin includes 61 species in 8 families, being composed of local faunas of the Northern Caspian Depression, the Greater Caucasus and Ciscaucasia, the Lesser Caucasus and Transcaucasia, the Alborz and Turkmeno-Khorasan mountains, the Aralo-Caspian Isthmus, the deserts and mountains of Middle Asia and the plains of the Aral Sea region. Regions with the richest snake diversity are Alborz, Turkmeno-Khorasanian Mountains and Transcaucasia. The snake fauna is composed of 25 biogeographic groups; all diversity of the distribution patterns is described by 10 main chorotype groups and 36 basic chorotypes. The most common element is Mediterranean (12 species), as well as Armeno-Iranian (7 species). Delta-diversity grows in the latitudinal direction, from the plains of the Aral Sea region and the North Caspian Lowland to the mountain systems of the Iranian Plateau. The level of species endemism is 25%. Six of the fourteen endemics live in the Alborz Mountains.

Full Text

The Aralo-Caspian region is a lowland depression in the Middle and partly Western Asia and surrounded by mountain ridges of the Great and Lesser Caucasus, Alborz, Turkmeno-Khorasan, Paropamisus, northern Hindu Kush, Tien-Shan and Pamiro-Alay. The Aralo-Caspian Depression is around of Aral and Caspian Sea and includes two unequal in size, Caspian and Turan depressions. The Caspian Depression encompassing the northern part of the Caspian Sea and bordered by the Caucasus in the west and Ustyurt Plateau in the east. The Turan Depression bordered in the north by Turgay Plateau and Mugodzhar Hills, by Kopet Dagh and Paropamisus in the south, by Tien Shan and Pamiro-Alay in the south-east, and by Chu-Ily Mountains and Betpak-Dala in the east. In general, the snake fauna is composed by species of northern deserts and mountains of the Central Asia and the Eastern Mediterranea. The herpetofauna of these vast territory is relatively well studied, with the exception of its southernmost part. Further study of the biodiversity of mountain systems of the Paropamisus and Hindu Kush is required, which still remain underexplored and the species list is incomplete. The species diversity and biogeographic relations of ophidiofauna of the Aralo-Caspian basin within the Caspian and Turanian lowlands and adjacent mountainous regions will be considered here.

MATERIAL AND METODS

The species diversity on of the snake fauna and their distribution have been described in numerous monographs on the herpetofauna of the USSR, Caucasus, Iran, Middle East and Western Palaearctic (Terentyev, Chernov, 1949; Chernov, 1959; Bannikov et al., 1977; Latifi, 1991; Tuniev et al., 2009, 2019; Sindaco et al., 2013; Rajabizadeh, 2018; Egan, 2022). Physiogeographic maps of the Caucasus, northern Iran, and Middle Asia were used to clarify the distribution and species list of each region. The previously proposed schemes of zoogeographic and herpetofaunistic zoning of the Northern Eurasia, territory of the USSR, Middle Asia with adjacent territories were also used to describe the ophidiofaunas of different zoogeographic provinces (Kryzhanovsky, 1965; Szczerbak, 1981, 1982, 2003; Bobrov, Aleshchenko, 2001, 2001a; Ravkin et al., 2010; Sindaco et al., 2013). Arealography was based on the analysis of the current distribution of each species, analyzing its entire range and presence/absence in certain regions of the Aralo-Caspian basin. Chorotypes were classified according to previously proposed (Gorodkov, 1984; Sindaco et al., 2000, 2013; Taglianti et al., 1999), or new combinations were used. The classification of biogeographic groups for this region was created based on those previously proposed for various groups of animals with modifications (Darevsky, 1957, 1959, 1981; Anderson, 1968; Spitzenberger, Bauer, 1979; Tchernov, 1992; Ataev et al., 1994; Fet, 1994; Mikhailov, Fet, 1994; Tuniyev, 1995; Disi, Boehme, 1996; Borisov, 2009; Mazanayeva, Tuniyev, 2011). Comparison of species diversity from different units is estimated using a standard similarity index. Sørensen’s Quotient of Similarity: 2 × number of taxa common to both areas/sum of totals of taxa from both areas, expressed as a percentage (Sørensen, 1948).

RESULTS AND DISSCUSSION

Taxonomic diversity. Species diversity of snakes (Serpentes) of Aralo-Caspian basin are composed by 61 species from 8 families. Two species from two families of blind snakes (Scolecophidia): Leptotyphlopidae и Typhlopidae opposite to all others snakes (Alethinophidia) and number 59 species. Primitive recent snakes (Henophidia) represented only by 5 species from one family (Boidae), while the vast majority belong to advanced snakes (Caenophidia) who are 54 species from 5 families. The true colubrids (Colubridae) and vipers (Viperidae) are most diverse groups and represented by 31 and 16 species respectively. Three species of the sand snakes (Psammophiidae), two species of water snakes (Natricidae) and two species of elapids (Elapidae) rounding out the list.

Local faunas and gamma diversity. Eleven geographical units belonging to the Aralo-Caspian region and possessing characteristic ophidiofauna were identified. The snake fauna of the Aral-Caspian Basin is composed of the faunas of the North Caspian Lowland (11 species), Great Caucasus and Ciscaucasia (23 species), Lesser Caucasus and Transcaucasia (29 species), Alborz (39 species), Turkmeno-Khorasanian Mountains (29 species), Paropamisus and Hindu Kush (23 species), Karakum Desert (19 species), Kyzylkum Desert (16 species), Aralo-Caspian Isthmus (13 species), North-East Aral Lowland (10 species), Tien-Shan and Pamiro-Alay (18 species). The most species-rich regions are the Alborz with piedmont plain, Turkmeno-Khorasanian Mountains and the Transcaucasia (Table 1).

 

Table 1. Number of the snake species in subregions of Aralo-Caspian basin

Subregion

Family

Leptotyphlopidae

Typhlopidae

Boidae

Colubridae

Natricidae

Psammophiidae

Elapidae

Viperidae

Total

North Caspian Lowland

2

3

2

2

2

11

Great Caucasus and Ciscaucasia

1

2

12

2

1

5

23

Lesser Caucasus and Transcaucasia

1

1

15

2

2

8

29

Alborz

1

1

3

21

2

3

2

6

39

Turkmeno-Khorasanian Mountains

1

3

16

1

3

1

3

28

Paropamisus and Hindu Kush

1

3

11

1

2

1

4

23

Karakum Desert

1

2

10

1

2

1

2

19

Kyzylkum Desert

1

2

7

1

1

1

3

16

Aralo-Caspian Isthmus

2

5

2

1

3

13

North-East Aral Lowland

1

4

2

1

2

10

Tien-Shan and Pamiro-Alay

1

2

7

1

1

1

5

18

 

Richness of species and genera. The higher richness of snakes in Aralo-Caspian basin was found primarily at the species level. Generic richness in three regions was identical (14 genera). In North Caspian Lowland and North-East Aral Lowland, there were fewer species. In Kyzylkum Desert were a lower average number of species per genera (1.14 species genus vs. 1.71 in Lesser Caucasus and Transcaucasia). The maximal richness is accounted for by two genera, Eirenis and Vipera, wich contain 6 of the 8 total species in the Alborz and 5 of the 7 total species in the Lesser Caucasia and Transcaucasia, respectively. 16 genera had single species per genus represented. Colubrids were the most speciose group in all subregions, whereas leptotyphlopids were most rare component in snake fauna. The North Caspian Lowland, Aralo-Caspian Isthmus and North-East Aral Lowland lacked leptotyphlopids, typhlopids and elapids, of which the others sites usually had 1–2 species (Table 2).

 

Table 2. Comparison of generis and species richness in the 11 subregions of study area

Subregion

Richness

species

genera

species/genera

endemic species

North Caspian Lowland

11

8

1.38

Great Caucasus and Ciscaucasia

23

14

1.64

2

Lesser Caucasus and Transcaucasia

29

17

1.71

3

Alborz

39

23

1.70

2

Turkmeno-Khorasanian Mountains

29

20

1.45

2

Paropamisus and Hindu Kush

23

17

1.35

?

Karakum Desert

19

15

1.27

Kyzylkum Desert

16

14

1.14

Aralo-Caspian Isthmus

13

10

1.30

North-East Aral Lowland

10

8

1.25

Tien-Shan and Pamiro-Alay

18

14

1.29

2

 

Zoogeographic zoning. Wide territory of Aralo-Caspian basin traditionally divided into seven zoogeographic provinces (after Kryzhanovsky, 1965): Caspian (20 snake species), Caucasian (24 species), Hyrcanian (20 species), Irano-Azerbaijanian mountane (42 species), Turanian deserted (19 species), Kazakh (13 species) and Afghano-Turkestanian (28 species). The Irano-Azerbaijanian mountane province has the highest number of species in Aralo-Caspian basin. The diversity of the Afghano-Turkestanian province remains underestimated. The whole territory of Aralo-Caspian region, according to herpeto-geographical zoning data, belongs to the Arid Mediterrano-Central Asian subregion (Szczerbak, 1981), or is divided into four sub-regions (Bobrov, Aleshchenko, 2001), with the majority of the territory falling into the Saharo-Gobian subregion (39 species), the significant part – on the Eurasian steppe (13 species), and, to a lesser extent, on the Mediterranean mountain-forest (22 species), Central Asian desert (43 species) and Central Asian mountain (11 species). Nevertheless, the most significant contribution to diversity is made precisely by the West Asian desert subregion.

Chorotype classification. Five major groups of chorotypes emerged from this study: 1. species widely distributed in Palaearctic

  1. species from Mediterranean region
  2. species widely or strictly distributed in West Asia
  3. species distributed or extending Central Asia
  4. species distributed in Paleotropics and extending to Palaearctic

Distribution patterns of species with Paleotropic extension and mainly distributed in Paleotropics reffered to same major group. Species widely distributed in the West Asia and locally distributed in Armenian Upland and Iranian Plateau merged to one group. Species distributed in countries of Eastern Mediterranea, Caucasus and Transcaucasia reffered to one big Mediterranean group. Small portion of species distributed mainly in regions of Central and Middle Asia provisionally referred to Central Asian group.

Palaearctic chorotypes

  1. West Palaearctic. Chorotype of species wide distributed in the Europe, North Africa and South-West Asia.
  2. East Palaearctic. Chorotype of species widespread in Middle and Central Asia and Siberia with penetration into Eastern Europe.

Mediterranean chorotypes

  1. East Mediterranean. Chorotype of species distributed in the eastern part of Mediterranea including Anatolia, Armenian highland, Levant, Balkans and Caucasus.
  2. Caucasian. Chorotype of species with Caucasian and Transcaucasian distribution.

West Asian chorotypes

  1. Saharo-Sindian. Chorotype of species widespread from Sahara to the Sind through Arabia.
  2. West Asian. Chorotype of species occuring in the Middle East including Levant, Hyrcania, Mesopotamia, Armenian and Iranian highlands with penetration into Turan and Afghanistan.

Central Asian chorotypes

  1. Middle Asian. Chorotype of species distributed in the Middle Asia with extension to Iran and Central Asia.
  2. Central Asian. Chorotype of species occuring in the Central Asia with extension to the Aralo-Caspian Depression.

Paleotropic chorotypes

  1. South Asian. Chorotype of species distributed in the Indian subcontinent, Pakistan, Afghanistan with extension to the Aralo-Caspian Depression.
  2. Afroasiatic. Chorotype of species widespread in East and North Africa, Middle East, Turan, Afghanistan and Pakistan.

Chorology and biogeographic groups. Snake diversity is unevenly distributed in the study area. The maximum diversity is recorded for Transcaucasia, Northern Iran and Afghanistan. The largest number of biogeographic groups of species is represented here. All diversity of distributional patterns is described by 10 main chorotype groups and 36 basic chorotypes (Table 3).

 

Table 3. Chorotypes and biogeographic affinities of snake species in Aralo-Caspian basin

Species

Basic chorotype

Chorotype group

Biogeographic group

Myriopholis macrorhyncha

(Jan 1860)

Afrotropical, Saharo-Sindian

Afroasiatic

Afro-Sindian

Xerotyphlops vermicularis (Merrem 1820)

East Mediterranian,
Turano-Turkestanian,
Armeno-Iranian

Mediterranean

Mediterranean

Eryx elegans (Gray 1849)

Turkmeno-Khorasanian,
Afghanian

West Asian

Turkmeno-Khorasanian endemic

Eryx jaculus (Linnaeus 1758)

Mediterranean,
Levantine-Mesopotamian,
Caucasian, Transcaucasian,
Armeno-Iranian

Mediterranean

Mediterranean

Eryx miliaris (Pallas 1773)

Irano-Turanian

Middle Asian

Turanian

Eryx tataricus (Lichtenstein 1823)

Turano-Turkestanian

Central Asian

Turkestanian

Eryx vittatus Chernov 1959

Pamiro-Alaian

Central Asian

Hissaro-Zeravshanian endemic

Boiga trigonata (Schneider 1802)

Turano-Sindian,
Irano-Afghanian,
Indo-Turanian

South Asian

Indo-Turanian

Coronella austriaca Laurenti 1768

Euro-Caucasian,
Euro-Siberian

Palaearctic

Western Palaearctic

Dolichophis caspius (Gmelin 1789)

East Mediterranean,
European,
Balkano-Caucasian

Mediterranean

Mediterranean

Dolichophis schmidti (Nikolsky 1909)

Anatolian,
Transcaucasian,
Armeno-Iranian

West Asian

Armeno-Iranian

Eirenis collaris (Ménétries 1832)

Caucasian,
Transcaucasian,
Armeno-Iranian

West Asian

Armeno-Iranian

Eirenis coronella (Schlegel 1837)

Levantine-Mesopotamian,
Irano-Arabian

West Asian

Mesopotamian

Eirenis medus Chernov 1949

Hyrcanian,
Turkmeno-Khorasanian

West Asian

Hyrcano-Khorasanian endemic

Eirenis modestus (Martin 1838)

East Mediterranean,
Anatolian, Caucasian,
Transcaucasian, Armenian

Mediterranean

Mediterranean

Eirenis persicus (Anderson 1872)

Levantine-Mesopotamian,
Armeno-Iranian,
Irano-Sindian

West Asian

Irano-Sindian

Eirenis punctatolineatus (Boettger 1892)

Armeno-Iranian,
Transcaucasian

West Asian

Armeno-Iranian

Eirenis walteri Boettger 1888

Turkmeno-Khorasanian

West Asian

Turkmeno-Khorasanian endemic

Elaphe dione (Pallas 1773)

Euro-Siberian,
Turano-Turkestanian

Palaearctic

Eastern Palaearctic

Elaphe sauromates (Pallas 1811)

East Mediterranean,
Anatolian, Balkano-Caucasian,
Armenian, Turanian

Mediterranean

Mediterranean

Hemorrhois nummifer (Reuss 1834)

East Mediterranean,
Armeno-Iranian,
Turanian

West Asian

West Asian

Hemorrhois ravergieri (Ménétries 1832)

Levantine, Armeno-Iranian,
Irano-Afghanian,
Turano-Turkestanian

West Asian

West Asian

Lycodon bicolor (Nikolsky 1903)

Turano-Sindian

South Asian

Turano-Sindian

Lytorhynchus ridgewayi Boulenger 1887

Irano-Afghanian,
Turano-Sindian

South Asian

Turano-Sindian

Oligodon transcaspicus (Nikolsky 1903)

Turkmeno-Khorasanian

West Asian

Turkmeno-Khorasanian endemic

Platyceps karelini (Brandt 1838)

Levantine-Mesopotamian,
Irano-Turanian,
Irano-Afghanian,
Turano-Sindian

West Asian

West Asian

Platyceps najadum (Eichwald 1831)

East Mediterranean,
Caucasian,
Transcaucasian,
Armeno-Iranian

Mediterranean

Mediterranean

Platyceps atayevi (Tuniyev et Shammakov 1993)

Turkmeno-Khorasanian

West Asian

Turkmeno-Khorasanian endemic

Platyceps rhodorachis (Jan 1863)

Afrotropical, Arabian,
Irano-Afghanian,
Turano-Sindian

Afroasiatic

Afro-Sindian

Ptyas mucosa (Linnaeus 1758)

Turano-Sindian,
Indo-Oriental

South Asian

Indo-Oriental

Rhynchocalamus satunini (Nikolsky 1899)

Levantine,
Armeno-Iranian

West Asian

Armeno-Iranian

Spalerosophis diadema (Schlegel 1837)

Saharo-Arabian,
Turano-Sindian,
Saharo-Sindian

West Asia

Saharo-Sindian

Telescopus fallax Fleischmann 1831

East Mediterranean,
Levantine, Caucasian,
Transcaucasian,
Armeno-Iranian

Mediterranean

Mediterranean

Telescopus rhinopoma (Blanford 1874)

Irano-Afghanian

West Asian

Irano-Afghanian

Telescopus tessellatus (Wall 1908)

Iranian

West Asian

Iranian

Zamenis hohenackeri (Strauch 1873)

East Mediterranean,
Caucasian, Armenian,
Transcaucasian

Mediterranean

Mediterranean

Zamenis longissimus (Laurenti 1768)

European,
Mediterranean,
Caucasian

Mediterranean

Mediterranean

Zamenis persicus (Werner 1913)

Hyrcanian

West Asian

Hyrcanian endemic

Natrix natrix (Linnaeus 1758)

Euro-Siberian, Mediterranean

Palaearctic

Western Palaearctic

Natrix tessellata (Laurenti 1768)

European,
Mediterrano-Turkestanian,
Irano-Turanian

Palaearctic

Western Palaearctic

Malpolon insignitus (Geoffroy 1827)

East Mediterranean,
Caucasian, Transcaucasian,
Armeno-Iranian

Mediterranean

Mediterranean

Psammophis lineolatus (Brandt 1838)

Irano-Turanian, Turkestanian

Middle Asian

Turano-Turkestanian

Psammophis schokari (Forskål 1775)

Saharo-Arabian,
Irano-Afghanian,
Saharo-Sindian

West Asian

Saharo-Sindian

Naja oxiana (Eichwald 1831)

Irano-Turanian,
Turano-Sindian

South Asian

Turano-Sindian

Walterinnesia morgani (Mocquard 1905)

Levantine-Mesopotamian,
Irano-Arabian

West Asian

Mesopotamian

Echis carinatus (Schneider 1801)

Irano-Arabian,
Turano-Sindian,
Indian

South Asian

Indo-Turanian

Macrovipera lebetina (Linnaeus 1758)

East Mediterranean,
Caucasian,
Levantine-Mesopotamian,
Transcaucasian,
Armeno-Iranian,
Turano-Sindian

West Asian

West Asian

Montivipera latifii (Mertens, Darevsky et Klemmer 1967)

Hyrcanian

West Asian

Hyrcanian endemic

Montivipera raddei (Boettger 1890)

Armeno-Iranian

West Asian

Armeno-Iranian

Montivipera wagneri (Nilson et Andrén 1984)

Armenian

West Asian

Armenian endemic

Vipera ammodytes (Linnaeus 1758)

East Mediterranean,
Balkano-Caucasian,
Transcaucasian

Mediterranean

Mediterranean

Vipera darevskii Vedmederja, Orlov et Tuniyev 1986

Armenian,
Transaucasian

Mediterranean

Transcaucasian endemic

Species

Basic chorotype

Chorotype group

Biogeographic group

Vipera dinnikii Nikolsky 1913

Caucasian

Mediterranean

Caucasian endemic

Vipera eriwanensis (Reuss 1933)

Transcaucasian,
Armenian, Hyrcanian

West Asian

Armeno-Iranian

Vipera kaznakovi Nikolsky 1909

Caucasian,
Transcaucasian

Mediterranean

Caucasian

Vipera pontica Billing, Nilson et Sattler 1990

Transcaucasian

Mediterranean

Transcaucasian endemic

Vipera renardi (Christoph 1861)

European, Caucasian,
Turkestanian

Palaearctic

Western Palaearctic

Pseudocerastes persicus (Duméril, Bibron et Duméril 1854)

Armeno-Iranian, Iranian

West Asian

Armeno-Iranian

Gloydius caucasicus (Nikolsky 1916)

Hyrcanian,
Turkmeno-Khorasanian

West Asian

Hyrcano- Khorasanian endemic

Gloydius halys (Pallas 1776)

Turano-Turkestanian,
Siberian

Palaearctic

Eastern Palaearctic

Gloydius rickmersi Wagner, Tiutenko, Borkin et Simonov 2015

Pamiro-Alaian

Central Asian

Hissaro-Alaian endemic

 

Which, in turn, are formed into 25 faunistic elements, or biogeographic groups (Western Palaearctic, Eastern Palaearctic, Afro-Sindian, Saharo-Sindian, Irano-Sindian, Turano-Sindian, Mediterranean, Transcaucasian, Caucasian, West Asian, Mesopotamian, Armenian, Armeno-Iranian, Iranian, Hyrcanian, Hyrcano-Khorasanian, Turkmeno-Khorasanian, Irano-Afghanian, Turanian, Turano-Turkestanian, Hissaro-Zeravshanian, Hissaro-Alaian, Indo-Turanian, Indo-Oriental). Of these, 11 are West Asian chorotypes (27 species); 3 East Mediterranean (15 species); 3 South Asian (6 species); 3 Central Asian (3 species); 2 Middle Asian (2 species); 2 Palaearctic (6 species) and 1 Afroasiatic (2 species). The Mediterranean group included species that have a significant part of the range in the Eastern Mediterranean and a probable mediterranean origin. A new Armeno-Iranian group is also proposed for species that have a compact distribution in the Armenian and Iranian Highlands. Species widely distributed in the Middle Asia, Afghanistan and Pakistan are assigned to the West Asian, or South Palaearctic group. Wide distributed species of the deserted areas from Sahara to Southern Pakistan traditionally refer to Saharo-Sindian group. The most common element is Mediterranean (12 species), as well as Armeno-Iranian (7 species). The faunistic core is formed by West Asian and Mediterranean species. Wide distributed Palaearctic species are 6; species with South Asian distributional type are 6; the number of Caucasian (including Transcaucasian) species is 5, while the number of Central Asian species is insignificant.

Delta diversity. The similarity of local faunas is determined by the presence of common species in each unit. Zoogeographical similarity is determined by the presence of common faunal elements. The Caucasus, Transcaucasia and Alborz characterized by predominance of Mediterranien faunal element. Northern regions such as North Caspian Lowland, Aralo-Caspian Isthmus, North-East Aral Lowland and Caucasus have maximal percent of species with palaearctic distribution. Transcaucasia region and Alborz mountain system are characterized by higher number of Armeno-Iranian species. Hyrcano-Khorasanian element presents respectively in Alborz and Turkmeno-Khorasanian mountains. The real diversity of Paropamisus and northern Hindu Kush mountains still unknown, only 23 snake species currently registered there. Snakes conform to the prediction that latitudinal position and attendant higher mean annual temperature, precipitation and primary productivity correlates with increasing species richness. Δ-diversity grows in the latitudinal direction, from the plains of the Aral Sea region and the North Caspian Lowland to the mountain systems of the Iranian Plateau. The broad latitudinal gradient is however disrupted by high percentage of species restricted to the Alborz and Turkmeno-Khorasanian Mountains. Furthermore, high levels of biodiversity are also recorded in the Eastern Transcaucasia.

Endemism. The study area has a moderate level of species endemism, which is 25%. Fifteen species from three families are endemic (Eryx elegans, Eryx vittatus, Eirenis medus, Eirenis walteri, Oligodon transcaspicus, Platyceps atayevi, Zamenis persicus, Montivipera latifii, Montivipera wagneri, Vipera darevskii, Vipera dinniki, Vipera kaznakovi, Vipera pontica, Gloydius caucasicus, Gloydius rickmersi). Eight groups of endemics identified from this study (Transcaucasian, Caucasian, Armenian, Hyrcanian, Hyrcano-Khorasanian, Turkmeno-Khorasanian, Hissaro-Zeravshanian and Hissaro-Alaian). The Alborz Mountains had substantionally more endemic species than others sites. The Alborz Mountains, distinguished by the highest γ-diversity, are at the same time the center of endemism. Six of the fourteen endemics occur here, with two (Zamenis persicus, Montivipera latifii) being strictly distributed in Alborz. In general, the endemism rate is not high, with only the southernmost regions having significant species diversity and endemics. The endemic species are mainly distributed along side three main mountain ranges. The Lesser Caucasus with Armenian Upland, Alborz and Turkmeno-Khorasanian Mountains located almost in the subtropical zone and climatically different from the cold deserts and mountains of the Middle and Central Asia. The importance of the mountain systems of Paropamisus and northern Hindu Kush cannot be assessed due to the poor knowledge. It is very likely, these two mountain ridges are also centers of species richness and endemism. At present their biodiversity is composed of widespread species of West and Middle Asia. In contrast, vast areas of the subboreal zone are characterized by noticeably less diversity and their importance is secondary. The proportion of narrow-ranged species is small (11 species), most of them relate to vipers (6 species) and colubrids (4 species). The previously proposed schemes of more fractional division into provinces are not always ensured by the originality of ophidiofauna and the presence of endemism.

Gamma diversity. The faunas are most similar: Karakum Desert and Kyzylkum Desert (86%); Paropamisus + Hundu Kush and Karakum Desert (82%); Tien Shan + Pamiro-Alay and Kyzylkum Desert (82%); Kyzylkum Desert and Paropamisus + Hundu Kush (82%); Aralo-Caspian Isthmus and North-East Aral Lowland (78%); Tien Shan + Pamiro-Alay and Karakum Desert (76%); Tien Shan +Pamiro-Alay and Paropamisus + Hindu Kush (73%); Great Caucasus + Ciscaucasia and Lesser Caucasus + Transcaucasia (73%); Turkmeno-Khorasan Mountains and Paropamisus and Hundu Kush (69%); North-East Aral Lowland and North Caspian Lowland (67%); Lesser Caucasus + Transcaucasia and Alborz (65%); Turkmeno-Khorasan Mountains and Alborz (65%). Neighboring regions usually have the greatest similarity, while at the same time there is a low percentage of similarity between Lesser Caucasus + Transcaucasia and Alborz and Turkmeno-Khorasan Mountains and Alborz. The lowest similarity indices are characterized by remote regions, such as Great Caucasus and Tien Shan or Aralo-Caspian Isthmus and Lesser Caucasus (Table 4). The similarity of faunas in such cases is formed by wide-distributed and palaearctic species.

 

Table 4. Quotiens (%) of similarity obtained from comparing total Aralo-Caspian subregion assemblages between eleven units, gamma diversity in each case

Natural region

North Caspian Lowland

Great Caucasus and Ciscaucasia

Lesser Caucasus and Transcaucasia

Alborz

Turkmeno-Khorasanian Mountains

Paropamisus
and Hindu Kush

Karakum Desert

Kyzylkum Desert

Aralo-Caspian Isthmus

North-East Aral Lowland

Tien-Shan and Pamiro-Alay

North Caspian Lowland

 

53

35

32

25

29

27

37

67

67

28

Great Caucasus and Ciscaucasia

53

 

73

48

27

26

29

31

33

36

24

Lesser Caucasus and Transcaucasia

35

73

 

65

38

31

29

27

24

31

26

Alborz

32

48

65

 

65

45

41

36

27

29

32

Turkmeno-Khorasanian Mountains

25

27

38

65

 

69

63

58

33

21

55

Paropamisus and Hindu Kush

29

26

31

45

69

 

90

82

56

42

73

Karakum Desert

27

29

29

41

63

90

 

86

56

41

76

Kyzylkum Desert

37

31

27

36

58

82

86

 

62

54

82

Aralo-Caspian Isthmus

67

33

24

27

33

56

56

62

 

78

45

North-East Aral Lowland

67

36

31

29

21

42

41

54

78

 

50

Tien-Shan and Pamiro-Alay

28

24

26

32

55

73

76

82

45

50

 

The highest values are in bold.

 

CONCLUSION

The Aralo-Caspian snake fauna is more likely to be West Asian-Mediterranean than Middle Asian. The contribution of Central Asian and South Asian biogeographic elements is insignificant. The proportion of Palaearctic species is also low, and the proportion of Turanian species is minimal. Endemism of the species level is associated exclusively with the mountainous regions bordering the Aralo-Caspian Depression to the south. There are no endemic or even sub-endemic species of the vast plains of the Ciscaucasia, North Caspian and Aral Sea depressions, Ustyurt Plateau, Karakum and Kyzylkum deserts. The lack of endemics and the high level of similarity between the faunas of the northern deserts suggest that the above characteristics reflect the fauna’s youthfulness, which would limit the amount of time available for adaptive diversification. Considering the high level of biodiversity and a significant percentage of endemic species in the Alborz-Turkmeno-Khorasanian Mountains, it is possible to assume a West Asian origin of the Turanian ophidiofauna. The contribution and importance of the fauna of the vast mountain systems of Paropamisus and northern Hindu Kush are still unclear, further faunistic study of these regions will lead to the discovery of new biodiversity hotspots.

FUNDING

The study was carried out in the framework of the State Theme of the Zoological Institute, Russian Academy of Sciences (№ 122031100282-2).

CONFLICT OF INTEREST

The author declares that he has no conflict of interest.

×

About the authors

K. D. Milto

Zoological Institute, Russian Academy of Sciences

Author for correspondence.
Email: coluber@zin.ru
Russian Federation, Universitetskaya emb., 1, St. Petersburg, 199034

References

  1. Anderson S.C., 1968. Zoogeographic analysis of the lizard fauna of Iran // The Cambridge History of Iran 1. Fisher W.B. (Ed.). Cambridge: Cambridge University Press. P. 305–371.
  2. Ataev Ch., Rustamov A.K., Shammakov S., 1994. Reptiles of Kopetdagh // Biogeography and Ecology of Turkmenistan. Fet V., Atamuradov K.I. (Eds). Dordrecht–Boston–London: Kluwer Academic Publishers. P. 329–350.
  3. Bannikov A.G., Darevsky I.S., Ishchenko V.G., Rustamov E.A., Szczerbak N.N., 1977. A guide to amphibians and reptiles of the fauna of USSR. Moscow: Prosveshchenie. 414 p. [in Russian]
  4. Bobrov V.V., Aleshchenko G.M., 2001. Scheme of herpetogeographic zoning of Russia and neighboring countries // The Problems of Herpetology. Proceedings of the 1th Meeting of the Nikolsкy Herpetological Society 4–7 December 2000. Pushchino–Moscow: MSU. P. 31–34 [in Russian]
  5. Bobrov V.V., Aleshchenko G.M., 2001a. Herpetogeographical regionalization of the Russia and adjacent countries // Russian Journal of Herpetology. V. 8. № 3. P. 223–238.
  6. Borisov S.N., 2009. Pattern of dragonfly (Odonata) distribution in Central Asia // Zoologicheskii Zhurnal. V. 88. № 1. P. 11–17. [In Russian].
  7. Chernov S.A., 1959. Reptiles. Fauna of Tajik SSR. V. 18. Stalinabad: Publishing House of the Academy of Sciences of the Tajik SSR. 202 p. [In Russian].
  8. Darevsky I.S., 1957. Turanian elements in the herpetofauna of Transcaucasia and probable ways of their migration from Middle Asia // Bulletin of the Academy of Sciences of the Armenian SSR. Biological and Agricultural Sciences. V. 10. № 12. P. 69–77. [In Russian].
  9. Darevsky I.S., 1959. Zoogeographical peculiarities of the herpetofauna of Lake Sevan basin and probable reasons for their occurrence // Bulletin of the Academy of Sciences of the Armenian SSR. Biological and Agricultural Sciences. V. 12. № 10. P. 15–22. [In Russian].
  10. Darevsky I.S., 1981. Kopet-Dagh hotspot of endemic herpetofauna and probable reasons for its formation // The Problems of Herpetology. Proceedings of the 5th Herpetological Conference of the USSR, Ashkhabad. 22–24 September 1981. Leningrad: Nauka. P. 47–48. [In Russian].
  11. Disi A.M., Boehme W., 1996. Zoogeography of the amphibians and reptiles of Syria, with additional new records // Herpetozoa. V. 9. № 1/2. P. 63–70.
  12. Egan D., 2022. Snakes of the Middle East. London: Bloomsbury Publishing. 240 p.
  13. Fet V., 1994. Biogeographic position of the Khorassan-Kopetdagh // Biogeography and Ecology of Turkmenistan. Fet V., Atamuradov K.I. (Eds.). Dordrecht–Boston–London: Kluwer Academic Publishers. P. 197–204.
  14. Gorodkov K.B., 1984. Ranges types of insects of tundra and forests zones of European part of U.S.S.R. // Provisional atlas of the insects of the European part of U.S.S.R. Gorodkov K.B. (Ed.) Leningrad: Nauka. P. 3–20. [in Russian].
  15. Kryzhanovsky O.L., 1965. Composition and origin of the terrestrial fauna of Middle Asia. Leningrad: Nauka. 420 p. [in Russian].
  16. Latifi M., 1991. The snakes of Iran. Contributions to Herpetology. № 7. Oxford: Soc. Stud. Amph. Rept. 160 p.
  17. Mazanayeva L.F., Tuniyev B.S., 2011. Zoogeographical analysis of the Daghestan herpetofauna // Current Studies in Herpetology. V. 11. № 1/2. P. 55–76. [in Russian].
  18. Mikhailov K.G., Fet V., 1994. Zoogeography of spiders (Aranei) of Turkmenistan // Biogeography and Ecology of Turkmenistan. Fet V., Atamuradov K.I. (Eds). Dordrecht–Boston–London: Kluwer Academic Publishers. P. 499–524.
  19. Rajabizadeh M., 2018. Snakes of Iran. Tehran: Iranshensai Publishing. 496 p. [in Farsi]
  20. Ravkin Yu.S., Bogomolova I.N., Yudkin V.A., 2010. Herpetofaunistic zonation of Northern Eurasia // Contemporary Problems of Ecology. V. 3. № 1. P. 63–75.
  21. Sindaco R., Venchi A., Carpaneto G.M., Bologna M.A., 2000. The reptiles of Anatolia: a checklist and zoogeographical analysis // Biogeographia. V. 21. P. 441–554.
  22. Sindaco R., Venchi A., Grieco C., 2013. The Reptiles of the Western Palearctic. V. 2. Annotated checklist and distributional atlas of the snakes of Europe, North Africa, Middle East and Central Asia, with an update to Vol. 1. Latina: Edizioni Belvedere. 543 p.
  23. Sørensen T., 1948. A method of establishing groups of equal amplitude in plant sociology based on similarity of species and its application to analyses of the vegetation on Danish commons // Biologiske Skrifter. № 5. P. 1–34.
  24. Spitzenberger V.F., Bauer K., 1979. Die Säugetierfauna Zyperns Teil II: Chiroptera, Lagomorpha, Carnivora und Artiodactyla // Annalen des Naturhistorischen Museums in Wien. Bd. 82. S. 439–465.
  25. Szczerbak N.N., 1981. Base of herpetogeographic zoning of the USSR // The Problems of Herpetology. Abstracts. Fifth herpetological Conference. Ashkhabad, 22–24 September 1981. P. 157–158. [In Russian].
  26. Szczerbak N.N., 1982. Grundzüge einer herpetogeographischen Gliederung der Paläarktis // Vertebrata Hungarica. T. 23. S. 227–239.
  27. Szczerbak N.N., 2003. Guide to the reptiles of the Eastern Palearctic. Malabar: Krieger Publishing Company. 260 p.
  28. Taglianti A.N., Audisio P.A., Biondi M., Bologna M.A., Carpaneto G.M., De Biase A., Fattorini S., Piattella E., Sindaco R., Venchi A., Zapparoli M., 1999. A proposal for a chorotype classification of the Near East fauna, in the framework of the Western Palearctic region // Biogeographia. V. 20. P. 31–59.
  29. Terentyev P.V., Chernov A.S., 1949. A guide to reptiles and amphibians. Moscow: Sovetskaya Nauka. 340 p. [in Russian].
  30. Tchernov E., 1992. The Afro-Arabian component in the Levantine mammalian fauna – a short biogeographical review // Israel Journal of Zoology. V. 38. P. 155–192.
  31. Tuniyev B.S., 1995. On the Mediterranean influence on the formation of herpetofauna of the Caucasian Isthmus and its main xerophylous refugia // Russian Journal of Herpetology. V. 2. № 2. P. 95–119.
  32. Tuniyev B.S., Orlov N.L., Ananjeva N.B., Aghasyan A.L., 2009. Snakes of the Caucasus: taxonomic diversity, distribution, conservation. St. Petersburg–Moscow: КМК Scientific Press. 223 p. [in Russian].
  33. Tuniyev B.S., Orlov N.L., Ananjeva N.B., Aghasyan A.L., 2019. Snakes of the Caucasus: taxonomic diversity, distribution, conservation. St. Petersburg–Moscow: КМК Scientific Press. 276 p.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».