Application of Molecular Topological Descriptors for Clustering a Database of Isothiourea Derivatives in Studying Structure – Activity Relationships


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

A database of some S,N,N,N′-tetrasubstituted isothiourea derivatives possessing neuroprotective properties was successfully clustered in order to study the quantitative structure – activity relationship. Clustering by k-means was carried out in the factor space of topological descriptors. The identified clusters were combined according to analyses of intra- and intercluster distances. The initial number of clusters in the k-means clustering was determined from the number of iterations for which a solution was obtained. The homogeneity of the database and the identified clusters was estimated by using a coefficient of molecular diversity. A plot of the database compounds as points in factor space led to a conclusion about the successful applicability of the proposed clustering approach.

Об авторах

E. Andreeva

Institute of Physiologically Active Compounds, Russian Academy of Sciences

Автор, ответственный за переписку.
Email: admiandrew@yandex.ru
Россия, 1 Severnyi Proezd, Chernogolovka, Moscow Oblast, 142432

A. Proshin

Institute of Physiologically Active Compounds, Russian Academy of Sciences

Email: admiandrew@yandex.ru
Россия, 1 Severnyi Proezd, Chernogolovka, Moscow Oblast, 142432

I. Serkov

Institute of Physiologically Active Compounds, Russian Academy of Sciences

Email: admiandrew@yandex.ru
Россия, 1 Severnyi Proezd, Chernogolovka, Moscow Oblast, 142432

L. Petrova

Institute of Physiologically Active Compounds, Russian Academy of Sciences

Email: admiandrew@yandex.ru
Россия, 1 Severnyi Proezd, Chernogolovka, Moscow Oblast, 142432

S. Bachurin

Institute of Physiologically Active Compounds, Russian Academy of Sciences

Email: admiandrew@yandex.ru
Россия, 1 Severnyi Proezd, Chernogolovka, Moscow Oblast, 142432

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Springer Science+Business Media, LLC, 2017

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).