Analytical Method Development and Validation for HPLC-ECD Determination of Moxifloxacin in Marketed Formulations


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

An HPLC-ECD analytical method with high reproducibility and wide linearity range has been developed and validated. Moxifloxacin was separated and identified using this method with a simple mobile phase comprising Britton Robinson buffer pH 5.0 and methanol (93: 7 v/v) flowing at a rate of 0.5 mL/min through Acclaim C18 column (150 mm × 4.6 mm × 5 im) maintained at 35°C and detected at redox potential value of 1.0 V. The LOD and LOQ were found to be 2.2 and 6.6 μg/mL, respectively. The HPLC-ECD method of moxifloxacin analysis was validated as per ICH Q2R1 guidelines and applied for assay of marketed moxifloxacin formulations to establish the acceptable recovery.

Об авторах

G. Phani Sekhar Reddy

Department of Pharmaceutical Quality Assurance, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education

Email: km.bhat@manipal.edu
Индия, Madhav Nagar, Manipal, Karnataka, 576104

K. Navyasree

Department of Pharmaceutical Quality Assurance, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education

Email: km.bhat@manipal.edu
Индия, Madhav Nagar, Manipal, Karnataka, 576104

P. Jagadish

Department of Pharmaceutical Quality Assurance, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education

Email: km.bhat@manipal.edu
Индия, Madhav Nagar, Manipal, Karnataka, 576104

Krishnamurthy Bhat

Department of Pharmaceutical Quality Assurance, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education

Автор, ответственный за переписку.
Email: km.bhat@manipal.edu
Индия, Madhav Nagar, Manipal, Karnataka, 576104

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Springer Science+Business Media, LLC, part of Springer Nature, 2018

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).