Computer Regression Models for P-Glycoprotein Transport of Drugs


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Regression models of the cellular substrate specificity of 177 drugs for P-glycoprotein were built using linear regression, random forest, and support vector methods. QSAR modeling used a full-trial search of all possible combinations of the seven most significant molecular descriptors with clear physicochemical interpretations. The statistics of the obtained models were satisfactory according to an internal cross-validation and external validation tests using 44 new compounds. H-bond descriptors were components of almost all most significant QSAR models. This confirmed that H-bonds played an important role in penetration of the compounds through the blood–brain barrier. The developed statistical models could be used to assess P-glycoprotein transport of investigational new drugs.

Негізгі сөздер

Авторлар туралы

V. Grigorev

Institute of Physiologically Active Compounds, Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: beng@ipac.ac.ru
Ресей, 1 Severnyi Pr., Chernogolovka, Moscow Oblast, 142432

S. Solodova

Institute of Physiologically Active Compounds, Russian Academy of Sciences

Email: beng@ipac.ac.ru
Ресей, 1 Severnyi Pr., Chernogolovka, Moscow Oblast, 142432

D. Polianczyk

Institute of Physiologically Active Compounds, Russian Academy of Sciences

Email: beng@ipac.ac.ru
Ресей, 1 Severnyi Pr., Chernogolovka, Moscow Oblast, 142432

J. Dearden

School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University

Email: beng@ipac.ac.ru
Ұлыбритания, Liverpool, L3 3AF

O. Raevsky

Institute of Physiologically Active Compounds, Russian Academy of Sciences

Email: beng@ipac.ac.ru
Ресей, 1 Severnyi Pr., Chernogolovka, Moscow Oblast, 142432

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Springer Science+Business Media, LLC, part of Springer Nature, 2019