Selection of Species for the Laboratory-Reared Algal Community by Their Hydrobiological and Biophysical Features


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Phytoplankton communities can serve as bioindicators of the water system state. It is necessary to select the appropriate species of microalgae to develop a model of a natural ecosystem that will allow performing multifactor experiments on the influence of physicochemical factors on the biophysical and hydrobiological characteristics of phytoplankton. This study has allowed selecting six species from those available in a museum to establish a model algal community. We have found that similar conditions are required for their optimal growth (light, temperature, and medium nutrients' supply). A medium with low nitrogen content is proposed to be used as a basal medium. Under these conditions, the cells function in a proper way and the cultures show satisfactory growth, while the duration of reaching the stationary stage of growth (10–15 days) allows having more experiments for a limited time. The cells of the selected species have morphological differences that are sufficient for the automated identification within the polyculture. We have obtained the geometric characteristics of cells for the computer counting of each species in the community on the microphotographs.

Об авторах

P. Fursova

Chair of Biophysics, Department of Biology

Автор, ответственный за переписку.
Email: fursova@biophys.msu.ru
Россия, Moscow, 119234

E. Voronova

Chair of Biophysics, Department of Biology

Email: fursova@biophys.msu.ru
Россия, Moscow, 119234

A. Levich

Chair of Biophysics, Department of Biology

Email: fursova@biophys.msu.ru
Россия, Moscow, 119234

D. Risnik

Chair of Biophysics, Department of Biology

Email: fursova@biophys.msu.ru
Россия, Moscow, 119234

S. Pogosyan

Chair of Biophysics, Department of Biology

Email: fursova@biophys.msu.ru
Россия, Moscow, 119234

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Allerton Press, Inc., 2017

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).