Parametric study of anomaly detection models for defect detection in infrared thermography

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In the current NDT 4.0 revolution, machine learning and artificial intelligence have emerged as the major enablers for non-destructive testing and evaluation (NDT&E) of industrial components. However, recent developments in active thermal NDT (TNDT) support its use as a practical method for checking a range of industrial components. Additionally, recent post-processing research in TNDT has developed several machine learning models to replace human interaction and offer automatic defect detection. However, the smaller area of the flaws and their related few thermal profiles than the wide sound area, leading to imbalanced datasets, make it difficult to train a supervised deep neural. Recently added to TNDT are anomaly detection models and one-class classifiers, both of which are commonly applied machine learning models to real-world issues. The accuracy and other important metrics in autonomous defect detection are influenced by the hyper-parameters of these models, such as contamination factor, volume of training data, and initialization parameter of the relevant model. The current paper investigates how initialization parameters affect these models’ TNDT capabilities for automated flaw detection. Using quadratic frequency modulated thermal wave imaging (QFMTWI), a carbon fiber-reinforced polymer specimen with variously sized artificially produced back-holes at different depths is examined. A good hyper-parameter for automatic flaw identification is chosen after qualitatively comparing testing accuracy, precision, recall, F-score, and probability.

About the authors

G. T Vesala

Mallareddy University

Email: gopitilak7@gmail.com
Hyderabad, Telangana, India

V. S Ghali

Koneru Lakshmaiah Educational Foundation

Vaddeswaram, Andhra Pradesh, India

Y. Naga prasanthi

Koneru Lakshmaiah Educational Foundation;Dhanekula Institute of Engineering & Technology

Vaddeswaram, Andhra Pradesh, India

B. Suresh

Koneru Lakshmaiah Educational Foundation

Vaddeswaram, Andhra Pradesh, India

References

  1. Aldrin C. John.Intelligence augmentation and Human Machine Interface (HMI) best practices for NDT 4.0 reliability / In ASNT Annual Conference, Westgate Las Vegas Resort & Casino, Wsetgs Las Vegas, Nevada. 2019.
  2. Maldague X.P.V. Theory and Practice of Infrared Technology for Non-Destructive Testing. New York: Wiley, 2001.
  3. Ciampa Francesco, Mahmoodi Pooya, Pinto Fulvio, Meo Michele. Recent advances in active infrared thermography for non-destructive testing of aerospace components // Sensors 18. 2018. No. 2. P. 609.
  4. He Yunze, Deng Baoyuan, Wang Hongjin, Cheng Liang, Zhou Ke, Cai Siyuan, Ciampa Francesco. Infrared machine vision and infrared thermography with deep learning: A review // Infrared Physics & Technology. 2021. V. 116. P. 103754.
  5. Luo Q, Gao B, Woo WL, Yang Y. Temporal and spatial deep learning network for infrared thermal defect detection // NDT & E International. 2019. V. 108. P. 102164.
  6. Hu Bozhen, Gao Bin, Lok Woo Wai, Ruan Lingfeng, Jin Jikun, Yang Yang, Yu Yongjie. A lightweight spatial and temporal multi-feature fusion network for defect detection // IEEE Transactions on Image Processing. 2020. V. 30. P. 472-486.
  7. Saeed Numan, King Nelson, Said Zafar, Omar Mohammed A. Automatic defects detection in CFRP thermograms, using convolutional neural networks and transfer learning // Infrared Physics & Technology. 2019. V. 102. P. 103048.
  8. Wei Ziang, Fernandes Henrique, Herrmann Hans-Georg, Tarpani Jose Ricardo, Osman Ahmad. A deep learning method for the impact damage segmentation of curve-shaped cfrp specimens inspected by infrared thermography // Sensors 21. 2021. No. 2. P. 395.
  9. Fang Qiang, Ibarra-Castanedo Clemente, Maldague Xavier. Automatic defects segmentation and identification by deep learning algorithm with pulsed thermography: Synthetic and experimental data // Big Data and Cognitive Computing 5. 2021. No. 1. P. 9.
  10. Wei Ziang, Fernandes Henrique, Tarpani Jose Ricardo, Osman Ahmad, Maldague Xavier. Stacked denoising autoencoder for infrared thermography image enhancement / In 2021 IEEE 19th International Conference on Industrial Informatics (INDIN), IEEE, 2021. P. 1-7.
  11. Cheng Liangliang, Kersemans Mathias. Dual-IRT-GAN: A defect-aware deep adversarial network to perform super-resolution tasks in infrared thermographic inspection // Composites Part B: Engineering. 2022. P. 110309.
  12. Tretout H., David D., Marin J. Y., Dessendre M., Couet M., Avenas-Payan I. An evaluation of artificial neural networks applied to infrared thermography inspection of composite aerospace structures // NDT and E International 6. 1996. No. 29. P. 392.
  13. Lakshmi A. Vijaya, Gopi tilak V., Parvez Muzammil M., Subhani S.K., Ghali V.S. Artificial neural networks based quantitative evaluation of subsurface anomalies in quadratic frequency modulated thermal wave imaging // Infrared Physics and Technology 97. 2019. P. 108-115.
  14. Lakshmi A. Vijaya, Ghali V.S., Subhani Sk., Baloji Naik R. Automated quantitative subsurface evaluation of fiber reinforced polymers // Infrared Physics & Technology 110. 2020. P. 103456.
  15. Vesala G.T., Ghali V.S., Lakshmi A. Vijaya, Naik R.B. Deep and handcrafted feature fusion for automatic defect detection in quadratic frequency modulated thermal wave imaging // Russian Journal of Nondestructive Testing. 2021. V. 57. No. 6. P. 476-485.
  16. Liu Lishuai, Guo Chenjun, Xiang Yanxun, Tu Yanxin, Wang Liming, Xuan Fu-Zhen. A semisupervised learning framework for recognition and classification of defects in transient thermography detection // IEEE Transactions on Industrial Informatics 18. 2021. No. 4. P. 2632-2640.
  17. Morelli Davide, Marani Roberto, D'Accardi Ester, Palumbo Davide, Galietti Umberto, D'Orazio Tiziana. A Convolution Residual Network for Heating-Invariant Defect Segmentation in Composite Materials Inspected by Lock-in Thermography // IEEE Transactions on Instrumentation and Measurement. 2021. V. 70. P 1-14.
  18. Tilak V. Gopi, Ghali V. S., Lakshmi A. Vijaya, Suresh B., Naik R. B. Proximity based automatic defect detection in quadratic frequency modulated thermal wave imaging // Infrared Physics & Technology. 2021. V. 114. P. 103674.
  19. Vesala G.T., Ghali V.S., Sastry DVA Rama, Naik R.B. Deep anomaly detection model for composite inspection in quadratic frequency modulated thermal wave imaging // NDT & E International. 2022. V. 132. P. 102710.
  20. Munir Mohsin, Chattha Muhammad Ali, Dengel Andreas, Ahmed Sheraz. A Comparative Analysis of Traditional and Deep Learning-based Anomaly Detection Methods for Streaming Data / In 2019 18th IEEE International Conference On Machine Learning And Applications (ICMLA). IEEE, 2019. P. 561-566.
  21. Sch�lkopf Bernhard, Platt John C., Shawe-Taylor John, Smola Alex J., Williamson Robert C. Estimating the support of a high-dimensional distribution // Neural computation. 2001. V. 13. No. 7. P. 1443-1471.
  22. Liu Fei Tony, Ting Kai Ming, Zhou Zhi-Hua. Isolation forest / In 2008 eighth IEEE international conference on data mining. IEEE, 2008. P. 413-422.
  23. Breunig Markus M., Kriegel Hans-Peter, Ng Raymond T., Sander J�rg. LOF: identifying density-based local outliers / In Proceedings of the 2000 ACM SIGMOD international conference on Management of data. 2000. P. 93-104.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».