ВЛИЯНИЕ ФАЗОВОГО СОСТАВА И ТЕМПЕРАТУРЫ ГОМОГЕНИЗАЦИИ НА МАГНИТНЫЕ ХАРАКТЕРИСТИКИ ВЫСОКОЭНТРОПИЙНЫХ СПЛАВОВ СИСТЕМЫ CoCrFeNiAlх

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Высокоэнтропийный сплав системы CoCrFeNiAlx (x = 0,3; 0,6; 0,8; 1,0) получен методом спекания порошков. Исследовано влияние температуры гомогенизации (900, 1000 и 1100 °С) на микроструктуру, фазовый состав, микротвердость и магнитные свойства сплава. Установлено, что с повышением температуры гомогенизации увеличивается микротвердость, намагниченность насыщения и максимальная магнитная проницаемость. Изменения магнитных характеристик коррелируют с изменением фазового состава. Полученные результаты подтверждают возможность использования магнитных методов для оценки изменения фазового состава в высокоэнтропийных сплавах данной системы

Об авторах

Евгения Александровна Путилова

ИМАШ УрО РАН

Email: tuevaevgenya@mail.ru
ORCID iD: 0000-0002-8508-8413

Кандидат технических наук, заведующий лабораторией, старший научный сотрудник, Лаборатория технологии материалов

Россия, 620049 Екатеринбург, Комсомольская, 34

Кристина Денисовна Малыгина

ИМАШ УрО РАН

Автор, ответственный за переписку.
Email: kristina.kryucheva@mail.ru
ORCID iD: 0000-0002-9932-2346
Россия, 620049 Екатеринбург, Комсомольская, 34

Александр Юрьевич Иванников

ИМЕТ РАН

Email: ivannikov-a@mail.ru
Россия, 119334 Москва, Ленинский пр-т, 49

Валерия Евгеньевна Веселова

ИМАШ УрО РАН

Email: le-ra@le-ra.ru
Россия, 620049 Екатеринбург, Комсомольская, 34

Список литературы

  1. Cantor B., Chang I.T.H., Knight P., Vincent A.J.B. Microstructural development in equiatomic multicomponent alloys // Materials Science and Engineering: A. 2004. V. 375—377. P. 213—218. https://doi.org/10.1016/j.msea.2003.10.257.
  2. Rogachev A.S. Structure, stability, and properties of high-entropy alloys // Phys. Met. Metallogr. 2020. V. 121. P. 733—764.
  3. Salishchev G.A., Tikhonovsky M.A., Shaysultanov D.G., Stepanov N.D., Kuznetsov A.V., Kolodiy I.V., Tortika A.S., Senkov O.N. Effect of Mn and M on structure and mechanical properties of high-entropy alloys based on CoCrFeNi system // J. Alloys Compd. 2014. V. 591. P. 11—21.
  4. Uporov S.A., Ryltsev R.E., Sidorov V.A., Estemirova S.K., Sterkhov E.V., Balyakin I.A., Chtchelkatchev N.M. Pressure effects on electronic structure and electrical conductivity of TiZrHfNb high-entropy alloy // Intermetallics. 2022. V. 140. No. 3. P. 107394.
  5. Zhang T., Zhao R.D., Wu F.F., Lin S.B., Jiang S.S., Huang Y.J., Chen S.H., Eckert J. Transformation-enhanced strength and ductility in a FeCoCrNiMn dual phase high-entropy alloy // Materials Science and Engineering: A. 2020. V. 780. P. 1—7. doi: 10.1016/j.msca.2020.139182
  6. Li Z., Pradeep K.G., Deng Y., Raabe D., Tasan C.C. Metastable high-entropy dual-phase alloys overcome the strength ductility trade-off // Nature. 2016. V. 534. P. 227.
  7. Fang Qihong, Chen Yang, Li Jia, Jiang Chao, Liu Bin, Liu Yong, Liaw Peter K. Probing the phase transformation and dislocation evolution in dual-phase high-entropy alloys // International Journal of Plasticity. 2019. V. 114. P. 161—173. doi: 10.1016/j.ijplas.2018.10.014
  8. Liang H., Qiao D., Miao J., Cao Z., Jiang H., Wang T. Anomalous microstructure and tribological evaluation of AlCrFeNiW0.2Ti0.5 high-entropy alloy coating manufactured by laser cladding in seawater // Journal of Materials Science and Technology. 2021. V. 85. P. 224—234.
  9. Dada M., Popoola P., Mathe N., Pityana S., Adeosun S., Aramide O. The comparative study of the microstructural and corrosion behaviour of laser-deposited high entropy alloys // Journal of Alloys and Compounds. 2021. V. 866. Article 158777.
  10. Adomako N.K., Shin G., Park N., Park K., Kim J.H. Laser dissimilar welding of CoCrFeMnNi-high entropy alloy and duplex stainless steel // Journal of Materials Science and Technology. 2021. V. 85. P. 95—105.
  11. Odetola P.I., Babalola B.J., Afolabi A.E., Anamu U.S., Olorundaisi E., Umba M.C., Phahlane T., Ayodele O.O., Olubambi P.A. Exploring high entropy alloys: A review on thermodynamic design and computational modeling strategies for advanced materials applications // Heliyon. 2024. V. 10. No. 22.
  12. Wang Q., Lu Y., Yu Q., Zhang Z. The exceptional strong face-centered cubic phase and semi-coherent phase boundary in a eutectic dual-phase high entropy alloy AlCoCrFeNi // Sci. Rep. 2018. V. 8. No. 1. P. 1—7.
  13. Li Dongyue, Liaw Peter K., Zhang Yong, Wang Wenrui. Mechanical behavior of AlxCoCrFeNi high-entropy-alloy rods in a wide temperature range // Materials Science and Engineering: A. 2025. V. 927. P. 148037.
  14. Arun S., Radhika N., Saleh B. Effect of Additional Alloying Elements on Microstructure and Properties of AlCoCrFeNi High Entropy Alloy System: A Comprehensive Review // Met. Mater. Int. 2025. V. 31. P. 285—324.
  15. Hillel G., Natovitz L., Salhov S., Haroush S., Pinkas M., Meshi L. Understanding the role of the constituting elements of the AlCoCrFeNi high entropy alloy through the investigation of quaternary alloys // Metals. 2020. V. 10. No. 10. P. 1275.
  16. Yan X., Guo H., Yang W., Pang S., Wang Q., Liu Y., Liaw K., Zhang T. Al0.3CrxFeCoNi high- entropy alloys with high corrosion resistance and good mechanical properties // J Alloys Compd. 2021. V. 860. P.158436.
  17. Guo Y., Liu L., Zhang W., Yao K., Zhao Z., Shang J., Qi J., Chen M., Zhao R., Wu F. Effects of electromagnetic pulse treatment on spinodal decomposed microstructure, mechanical and corrosion properties of AlCoCrFeNi high entropy alloy // J Alloys Compd. 2021. V. 889. P.161676.
  18. Shiratori H., Fujieda T., Yamanaka K., Koizumi Y., Kuwabara K., Kato T. Relationship between the microstructure and mechanical properties of an equiatomic AlCoCrFeNi high-entropy alloy fabricated by selective electron beam melting // Mater. Sci. Eng. A. 2016. V. 656. P. 39—46.
  19. Joseph J., Stanfor N., Hodgson P., Fabijanic D.M. Understanding the mechanical behaviour and the large strength/ductility differences between FCC and BCC AlxCoCrFeNi high entropy alloys // Journal of Alloys and Compounds. 2017. V. 726. P. 885—895. https://doi.org/10.1016/j.jallcom.2017.08.067.
  20. Zhao Chendong, Li Jinshan, Liu Yudong, Wang William Yi, Kou Hongchao, Beaugnon Eric, Wang Jun. Tailoring mechanical and magnetic properties of AlCoCrFeNi high-entropy alloy via phase transformation // J. Mater. Sci. Technol. 2021. V. 73. P. 83—90.
  21. Kao Y.F., Chen S.K., Chen T.J., Chu P.C., Yeh J.W., Lin S.J. Electrical, magnetic, and Hall properties of AlxCoCrFeNi high-entropy alloys // Journal of Alloys and Compounds. 2011. V. 509. P. 1607—1614.
  22. Uporov S., Bykov V., Pryanichnikov S., Shubin A., Uporov N. Effect of synthesis route on structure and properties of AlCoCrFeNi high-entropy alloy // Intermetallics. 2017. V. 83. P. 1—8. https://doi.org/10.1016/j.intermet.2016.12.003
  23. Михеев М. Н., Горкунов Э. С. Магнитные методы структурного анализа и неразрушающего контроля. М.: Наука, 1993. 252 с.
  24. Горкунов Э.С., Мушников А.Н. Магнитные методы оценки упругих напряжений в ферромагнитных сталях (обзор) // Контроль. Диагностика. 2020. Т. 23. № 12. С. 4—23. doi: 10.14489/td.2020.12.pp.004-023
  25. Горкунов Э.С., Поволоцкая А.М., Задворкин С.М., Путилова (Туева) Е.А., Мушников А.Н., Базулин Е.Г., Вопилкин А.Х. Особенности поведения магнитных и акустических характеристик горячекатаной стали 08Г2Б при циклическом нагружении // Дефектоскопия. 2019. № 11. С. 21—31.
  26. Кулеев В. Г., Горкунов Э. С. Механизмы влияния внутренних и внешних напряжений на коэрцитивную силу ферромагнитных сталей // Дефектоскопия. 1997. № 11. С. 3—18.
  27. Mushnikov A. N., Mitropolskaya S. Yu. Influence of mechanical loading on the magnetic characteristics of pipe steels of different classes // Diagnostics, Resource and Mechanics of materials and structures. 2016. V. 4. P. 57—70. doi: 10.17804/2410-9908.2016.4.057-070
  28. Путилова Е.А., Малыгина К.Д., Горулева Л.С., Костин В.Н., Василенко О.Н., Перов В.Н. Взаимосвязь магнитных параметров со степенью рекристаллизации при отжиге предварительно деформированного никеля // Дефектоскопия. 2025. № 6. С. 38—49.
  29. Перов В.Н., Михайлов Л.В., Костин В.Н., Поволоцкая А.М. Магнитные и магнитоакустические параметры оценки степени рекристаллизации и анизотропии сплава // Дефектоскопия. 2025. № 5. C. 68—74.
  30. Chou H. P.,Chang Y. S., Chen S. K., Yeh J. W. Microstructure, thermophysical and electrical properties in AlxCoCrFeNi (0 ≤ x ≤ 2) high-entropy alloys // Mater. Sci. Eng. B. 2009. V. 163. P. 184.
  31. Рогачев А.С. Структура, стабильность и свойства высокоэнтропийных сплавов // Физика металлов и металловедение. 2020. Т. 121. № 8. С. 807—841. doi: 10.31857/S0015323020080094
  32. Горкунов Э.С., Задворкин С.М., Путилова Е.А. Оценка приложенных напряжений при упругопластической деформации одноосным растяжением двухслойного композиционного материала “сталь Ст3 — сталь 08Х18Н10Т” магнитными методами // Дефектоскопия. 2012. № 8. С. 64—76.
  33. Щербинин В. Е., Горкунов Э. С. Магнитный контроль качества металлов. Екатеринбург: Изд-во УрО РАН, 1996. 263 с.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».