ВЛИЯНИЕ ФАЗОВОГО СОСТАВА И ТЕМПЕРАТУРЫ ГОМОГЕНИЗАЦИИ НА МАГНИТНЫЕ ХАРАКТЕРИСТИКИ ВЫСОКОЭНТРОПИЙНЫХ СПЛАВОВ СИСТЕМЫ CoCrFeNiAlх
- Авторы: Путилова Е.А.1, Малыгина К.Д.1, Иванников А.Ю.2, Веселова В.Е.1
-
Учреждения:
- ИМАШ УрО РАН
- ИМЕТ РАН
- Выпуск: № 10 (2025)
- Страницы: 56-67
- Раздел: Комплексное применение методов неразрушающего контроля
- URL: https://journal-vniispk.ru/0130-3082/article/view/302250
- DOI: https://doi.org/10.31857/S0130308225100069
- ID: 302250
Цитировать
Аннотация
Высокоэнтропийный сплав системы CoCrFeNiAlx (x = 0,3; 0,6; 0,8; 1,0) получен методом спекания порошков. Исследовано влияние температуры гомогенизации (900, 1000 и 1100 °С) на микроструктуру, фазовый состав, микротвердость и магнитные свойства сплава. Установлено, что с повышением температуры гомогенизации увеличивается микротвердость, намагниченность насыщения и максимальная магнитная проницаемость. Изменения магнитных характеристик коррелируют с изменением фазового состава. Полученные результаты подтверждают возможность использования магнитных методов для оценки изменения фазового состава в высокоэнтропийных сплавах данной системы
Об авторах
Евгения Александровна Путилова
ИМАШ УрО РАН
Email: tuevaevgenya@mail.ru
ORCID iD: 0000-0002-8508-8413
Кандидат технических наук, заведующий лабораторией, старший научный сотрудник, Лаборатория технологии материалов
Россия, 620049 Екатеринбург, Комсомольская, 34Кристина Денисовна Малыгина
ИМАШ УрО РАН
Автор, ответственный за переписку.
Email: kristina.kryucheva@mail.ru
ORCID iD: 0000-0002-9932-2346
Россия, 620049 Екатеринбург, Комсомольская, 34
Александр Юрьевич Иванников
ИМЕТ РАН
Email: ivannikov-a@mail.ru
Россия, 119334 Москва, Ленинский пр-т, 49
Валерия Евгеньевна Веселова
ИМАШ УрО РАН
Email: le-ra@le-ra.ru
Россия, 620049 Екатеринбург, Комсомольская, 34
Список литературы
- Cantor B., Chang I.T.H., Knight P., Vincent A.J.B. Microstructural development in equiatomic multicomponent alloys // Materials Science and Engineering: A. 2004. V. 375—377. P. 213—218. https://doi.org/10.1016/j.msea.2003.10.257.
- Rogachev A.S. Structure, stability, and properties of high-entropy alloys // Phys. Met. Metallogr. 2020. V. 121. P. 733—764.
- Salishchev G.A., Tikhonovsky M.A., Shaysultanov D.G., Stepanov N.D., Kuznetsov A.V., Kolodiy I.V., Tortika A.S., Senkov O.N. Effect of Mn and M on structure and mechanical properties of high-entropy alloys based on CoCrFeNi system // J. Alloys Compd. 2014. V. 591. P. 11—21.
- Uporov S.A., Ryltsev R.E., Sidorov V.A., Estemirova S.K., Sterkhov E.V., Balyakin I.A., Chtchelkatchev N.M. Pressure effects on electronic structure and electrical conductivity of TiZrHfNb high-entropy alloy // Intermetallics. 2022. V. 140. No. 3. P. 107394.
- Zhang T., Zhao R.D., Wu F.F., Lin S.B., Jiang S.S., Huang Y.J., Chen S.H., Eckert J. Transformation-enhanced strength and ductility in a FeCoCrNiMn dual phase high-entropy alloy // Materials Science and Engineering: A. 2020. V. 780. P. 1—7. doi: 10.1016/j.msca.2020.139182
- Li Z., Pradeep K.G., Deng Y., Raabe D., Tasan C.C. Metastable high-entropy dual-phase alloys overcome the strength ductility trade-off // Nature. 2016. V. 534. P. 227.
- Fang Qihong, Chen Yang, Li Jia, Jiang Chao, Liu Bin, Liu Yong, Liaw Peter K. Probing the phase transformation and dislocation evolution in dual-phase high-entropy alloys // International Journal of Plasticity. 2019. V. 114. P. 161—173. doi: 10.1016/j.ijplas.2018.10.014
- Liang H., Qiao D., Miao J., Cao Z., Jiang H., Wang T. Anomalous microstructure and tribological evaluation of AlCrFeNiW0.2Ti0.5 high-entropy alloy coating manufactured by laser cladding in seawater // Journal of Materials Science and Technology. 2021. V. 85. P. 224—234.
- Dada M., Popoola P., Mathe N., Pityana S., Adeosun S., Aramide O. The comparative study of the microstructural and corrosion behaviour of laser-deposited high entropy alloys // Journal of Alloys and Compounds. 2021. V. 866. Article 158777.
- Adomako N.K., Shin G., Park N., Park K., Kim J.H. Laser dissimilar welding of CoCrFeMnNi-high entropy alloy and duplex stainless steel // Journal of Materials Science and Technology. 2021. V. 85. P. 95—105.
- Odetola P.I., Babalola B.J., Afolabi A.E., Anamu U.S., Olorundaisi E., Umba M.C., Phahlane T., Ayodele O.O., Olubambi P.A. Exploring high entropy alloys: A review on thermodynamic design and computational modeling strategies for advanced materials applications // Heliyon. 2024. V. 10. No. 22.
- Wang Q., Lu Y., Yu Q., Zhang Z. The exceptional strong face-centered cubic phase and semi-coherent phase boundary in a eutectic dual-phase high entropy alloy AlCoCrFeNi // Sci. Rep. 2018. V. 8. No. 1. P. 1—7.
- Li Dongyue, Liaw Peter K., Zhang Yong, Wang Wenrui. Mechanical behavior of AlxCoCrFeNi high-entropy-alloy rods in a wide temperature range // Materials Science and Engineering: A. 2025. V. 927. P. 148037.
- Arun S., Radhika N., Saleh B. Effect of Additional Alloying Elements on Microstructure and Properties of AlCoCrFeNi High Entropy Alloy System: A Comprehensive Review // Met. Mater. Int. 2025. V. 31. P. 285—324.
- Hillel G., Natovitz L., Salhov S., Haroush S., Pinkas M., Meshi L. Understanding the role of the constituting elements of the AlCoCrFeNi high entropy alloy through the investigation of quaternary alloys // Metals. 2020. V. 10. No. 10. P. 1275.
- Yan X., Guo H., Yang W., Pang S., Wang Q., Liu Y., Liaw K., Zhang T. Al0.3CrxFeCoNi high- entropy alloys with high corrosion resistance and good mechanical properties // J Alloys Compd. 2021. V. 860. P.158436.
- Guo Y., Liu L., Zhang W., Yao K., Zhao Z., Shang J., Qi J., Chen M., Zhao R., Wu F. Effects of electromagnetic pulse treatment on spinodal decomposed microstructure, mechanical and corrosion properties of AlCoCrFeNi high entropy alloy // J Alloys Compd. 2021. V. 889. P.161676.
- Shiratori H., Fujieda T., Yamanaka K., Koizumi Y., Kuwabara K., Kato T. Relationship between the microstructure and mechanical properties of an equiatomic AlCoCrFeNi high-entropy alloy fabricated by selective electron beam melting // Mater. Sci. Eng. A. 2016. V. 656. P. 39—46.
- Joseph J., Stanfor N., Hodgson P., Fabijanic D.M. Understanding the mechanical behaviour and the large strength/ductility differences between FCC and BCC AlxCoCrFeNi high entropy alloys // Journal of Alloys and Compounds. 2017. V. 726. P. 885—895. https://doi.org/10.1016/j.jallcom.2017.08.067.
- Zhao Chendong, Li Jinshan, Liu Yudong, Wang William Yi, Kou Hongchao, Beaugnon Eric, Wang Jun. Tailoring mechanical and magnetic properties of AlCoCrFeNi high-entropy alloy via phase transformation // J. Mater. Sci. Technol. 2021. V. 73. P. 83—90.
- Kao Y.F., Chen S.K., Chen T.J., Chu P.C., Yeh J.W., Lin S.J. Electrical, magnetic, and Hall properties of AlxCoCrFeNi high-entropy alloys // Journal of Alloys and Compounds. 2011. V. 509. P. 1607—1614.
- Uporov S., Bykov V., Pryanichnikov S., Shubin A., Uporov N. Effect of synthesis route on structure and properties of AlCoCrFeNi high-entropy alloy // Intermetallics. 2017. V. 83. P. 1—8. https://doi.org/10.1016/j.intermet.2016.12.003
- Михеев М. Н., Горкунов Э. С. Магнитные методы структурного анализа и неразрушающего контроля. М.: Наука, 1993. 252 с.
- Горкунов Э.С., Мушников А.Н. Магнитные методы оценки упругих напряжений в ферромагнитных сталях (обзор) // Контроль. Диагностика. 2020. Т. 23. № 12. С. 4—23. doi: 10.14489/td.2020.12.pp.004-023
- Горкунов Э.С., Поволоцкая А.М., Задворкин С.М., Путилова (Туева) Е.А., Мушников А.Н., Базулин Е.Г., Вопилкин А.Х. Особенности поведения магнитных и акустических характеристик горячекатаной стали 08Г2Б при циклическом нагружении // Дефектоскопия. 2019. № 11. С. 21—31.
- Кулеев В. Г., Горкунов Э. С. Механизмы влияния внутренних и внешних напряжений на коэрцитивную силу ферромагнитных сталей // Дефектоскопия. 1997. № 11. С. 3—18.
- Mushnikov A. N., Mitropolskaya S. Yu. Influence of mechanical loading on the magnetic characteristics of pipe steels of different classes // Diagnostics, Resource and Mechanics of materials and structures. 2016. V. 4. P. 57—70. doi: 10.17804/2410-9908.2016.4.057-070
- Путилова Е.А., Малыгина К.Д., Горулева Л.С., Костин В.Н., Василенко О.Н., Перов В.Н. Взаимосвязь магнитных параметров со степенью рекристаллизации при отжиге предварительно деформированного никеля // Дефектоскопия. 2025. № 6. С. 38—49.
- Перов В.Н., Михайлов Л.В., Костин В.Н., Поволоцкая А.М. Магнитные и магнитоакустические параметры оценки степени рекристаллизации и анизотропии сплава // Дефектоскопия. 2025. № 5. C. 68—74.
- Chou H. P.,Chang Y. S., Chen S. K., Yeh J. W. Microstructure, thermophysical and electrical properties in AlxCoCrFeNi (0 ≤ x ≤ 2) high-entropy alloys // Mater. Sci. Eng. B. 2009. V. 163. P. 184.
- Рогачев А.С. Структура, стабильность и свойства высокоэнтропийных сплавов // Физика металлов и металловедение. 2020. Т. 121. № 8. С. 807—841. doi: 10.31857/S0015323020080094
- Горкунов Э.С., Задворкин С.М., Путилова Е.А. Оценка приложенных напряжений при упругопластической деформации одноосным растяжением двухслойного композиционного материала “сталь Ст3 — сталь 08Х18Н10Т” магнитными методами // Дефектоскопия. 2012. № 8. С. 64—76.
- Щербинин В. Е., Горкунов Э. С. Магнитный контроль качества металлов. Екатеринбург: Изд-во УрО РАН, 1996. 263 с.
Дополнительные файлы
