INFLUENCE OF PHASE COMPOSITION AND HOMOGENIZATION TEMPERATURE ON MAGNETIC CHARACTERISTICS OF HIGH-ENTROPY ALLOYS OF THE SYSTEM CoCrFeNiAlx
- Авторлар: Putilova E.A.1, Malygina K.D.1, Ivannikov A.Y.2, Veselova V.E.1
-
Мекемелер:
- IES UB RAS
- IMET RAS
- Шығарылым: № 10 (2025)
- Беттер: 56-67
- Бөлім: Comprehensive application of non-destructive testing methods
- URL: https://journal-vniispk.ru/0130-3082/article/view/302250
- DOI: https://doi.org/10.31857/S0130308225100069
- ID: 302250
Дәйексөз келтіру
Аннотация
High-entropy alloy of the CoCrFeNiAlx system (x = 0,3; 0,6; 0,8; 1,0) was obtained by powder sintering. The influence of homogenization temperature (900, 1000 and 1100 °C) on microstructure, phase composition, microhardness and magnetic properties of the alloy was investigated. It was found that microhardness, saturation magnetization and maximum magnetic permeability increase with increasing homogenization temperature. The changes in magnetic characteristics correlate with the phase composition. The results obtained confirm the possibility of using magnetic methods to evaluate structural changes in high-entropy alloys of this system
Авторлар туралы
Evgeniia Putilova
IES UB RAS
Email: tuevaevgenya@mail.ru
ORCID iD: 0000-0002-8508-8413
Кандидат технических наук, заведующий лабораторией, старший научный сотрудник, Лаборатория технологии материалов
Ресей, 620049 Ekaterinburg, Komsomolskaya, 34Kristina Malygina
IES UB RAS
Хат алмасуға жауапты Автор.
Email: kristina.kryucheva@mail.ru
ORCID iD: 0000-0002-9932-2346
Ресей, 620049 Ekaterinburg, Komsomolskaya, 34
Alexandr Ivannikov
IMET RAS
Email: ivannikov-a@mail.ru
Ресей, 119334, Moscow, Leninsky pr., 49
Valeria Veselova
IES UB RAS
Email: le-ra@le-ra.ru
Ресей, 620049 Ekaterinburg, Komsomolskaya, 34
Әдебиет тізімі
- Cantor B., Chang I.T.H., Knight P., Vincent A.J.B. Microstructural development in equiatomic multicomponent alloys // Materials Science and Engineering: A. 2004. V. 375—377. P. 213—218. https://doi.org/10.1016/j.msea.2003.10.257.
- Rogachev A.S. Structure, stability, and properties of high-entropy alloys // Phys. Met. Metallogr. 2020. V. 121. P. 733—764.
- Salishchev G.A., Tikhonovsky M.A., Shaysultanov D.G., Stepanov N.D., Kuznetsov A.V., Kolodiy I.V., Tortika A.S., Senkov O.N. Effect of Mn and M on structure and mechanical properties of high-entropy alloys based on CoCrFeNi system // J. Alloys Compd. 2014. V. 591. P. 11—21.
- Uporov S.A., Ryltsev R.E., Sidorov V.A., Estemirova S.K., Sterkhov E.V., Balyakin I.A., Chtchelkatchev N.M. Pressure effects on electronic structure and electrical conductivity of TiZrHfNb high-entropy alloy // Intermetallics. 2022. V. 140. No. 3. P. 107394.
- Zhang T., Zhao R.D., Wu F.F., Lin S.B., Jiang S.S., Huang Y.J., Chen S.H., Eckert J. Transformation-enhanced strength and ductility in a FeCoCrNiMn dual phase high-entropy alloy // Materials Science and Engineering: A. 2020. V. 780. P. 1—7. doi: 10.1016/j.msca.2020.139182
- Li Z., Pradeep K.G., Deng Y., Raabe D., Tasan C.C. Metastable high-entropy dual-phase alloys overcome the strength ductility trade-off // Nature. 2016. V. 534. P. 227.
- Fang Qihong, Chen Yang, Li Jia, Jiang Chao, Liu Bin, Liu Yong, Liaw Peter K. Probing the phase transformation and dislocation evolution in dual-phase high-entropy alloys // International Journal of Plasticity. 2019. V. 114. P. 161—173. doi: 10.1016/j.ijplas.2018.10.014
- Liang H., Qiao D., Miao J., Cao Z., Jiang H., Wang T. Anomalous microstructure and tribological evaluation of AlCrFeNiW0.2Ti0.5 high-entropy alloy coating manufactured by laser cladding in seawater // Journal of Materials Science and Technology. 2021. V. 85. P. 224—234.
- Dada M., Popoola P., Mathe N., Pityana S., Adeosun S., Aramide O. The comparative study of the microstructural and corrosion behaviour of laser-deposited high entropy alloys // Journal of Alloys and Compounds. 2021. V. 866. Article 158777.
- Adomako N.K., Shin G., Park N., Park K., Kim J.H. Laser dissimilar welding of CoCrFeMnNi-high entropy alloy and duplex stainless steel // Journal of Materials Science and Technology. 2021. V. 85. P. 95—105.
- Odetola P.I., Babalola B.J., Afolabi A.E., Anamu U.S., Olorundaisi E., Umba M.C., Phahlane T., Ayodele O.O., Olubambi P.A. Exploring high entropy alloys: A review on thermodynamic design and computational modeling strategies for advanced materials applications // Heliyon. 2024. V. 10. No. 22.
- Wang Q., Lu Y., Yu Q., Zhang Z. The exceptional strong face-centered cubic phase and semi-coherent phase boundary in a eutectic dual-phase high entropy alloy AlCoCrFeNi // Sci. Rep. 2018. V. 8. No. 1. P. 1—7.
- Li Dongyue, Liaw Peter K., Zhang Yong, Wang Wenrui. Mechanical behavior of AlxCoCrFeNi high-entropy-alloy rods in a wide temperature range // Materials Science and Engineering: A. 2025. V. 927. P. 148037.
- Arun S., Radhika N., Saleh B. Effect of Additional Alloying Elements on Microstructure and Properties of AlCoCrFeNi High Entropy Alloy System: A Comprehensive Review // Met. Mater. Int. 2025. V. 31. P. 285—324.
- Hillel G., Natovitz L., Salhov S., Haroush S., Pinkas M., Meshi L. Understanding the role of the constituting elements of the AlCoCrFeNi high entropy alloy through the investigation of quaternary alloys // Metals. 2020. V. 10. No. 10. P. 1275.
- Yan X., Guo H., Yang W., Pang S., Wang Q., Liu Y., Liaw K., Zhang T. Al0.3CrxFeCoNi high- entropy alloys with high corrosion resistance and good mechanical properties // J Alloys Compd. 2021. V. 860. P.158436.
- Guo Y., Liu L., Zhang W., Yao K., Zhao Z., Shang J., Qi J., Chen M., Zhao R., Wu F. Effects of electromagnetic pulse treatment on spinodal decomposed microstructure, mechanical and corrosion properties of AlCoCrFeNi high entropy alloy // J Alloys Compd. 2021. V. 889. P.161676.
- Shiratori H., Fujieda T., Yamanaka K., Koizumi Y., Kuwabara K., Kato T. Relationship between the microstructure and mechanical properties of an equiatomic AlCoCrFeNi high-entropy alloy fabricated by selective electron beam melting // Mater. Sci. Eng. A. 2016. V. 656. P. 39—46.
- Joseph J., Stanfor N., Hodgson P., Fabijanic D.M. Understanding the mechanical behaviour and the large strength/ductility differences between FCC and BCC AlxCoCrFeNi high entropy alloys // Journal of Alloys and Compounds. 2017. V. 726. P. 885—895. https://doi.org/10.1016/j.jallcom.2017.08.067.
- Zhao Chendong, Li Jinshan, Liu Yudong, Wang William Yi, Kou Hongchao, Beaugnon Eric, Wang Jun. Tailoring mechanical and magnetic properties of AlCoCrFeNi high-entropy alloy via phase transformation // J. Mater. Sci. Technol. 2021. V. 73. P. 83—90.
- Kao Y.F., Chen S.K., Chen T.J., Chu P.C., Yeh J.W., Lin S.J. Electrical, magnetic, and Hall properties of AlxCoCrFeNi high-entropy alloys // Journal of Alloys and Compounds. 2011. V. 509. P. 1607—1614.
- Uporov S., Bykov V., Pryanichnikov S., Shubin A., Uporov N. Effect of synthesis route on structure and properties of AlCoCrFeNi high-entropy alloy // Intermetallics. 2017. V. 83. P. 1—8. https://doi.org/10.1016/j.intermet.2016.12.003
- Mikheev M. N., Gorkunov E. S. Magnetic Methods of Structural Analysis and Non-destructive Testing. Moscow: Nauka, 1993. 252 p. [In Russian].
- Gorkunov E.S., Mushnikov A.N. Magnetic methods of evaluating elastic stresses in ferromagnetic steels (review) // Testing. Diagnostics. 2020. V. 23. No. 12. P. 4—23.
- Gorkunov E.S., Povolotskaya A.M., Zadvorkin S.M., Putilova E. A., Mushnikov A.N. The Effect of Cyclic Preloading on the Magnetic Behavior of the Hot-Rolled 08G2B Steel Under Elastic Uniaxial Tension // Defectoskopiya. 2019. No. 11. P. 21—31.
- Kuleev V.G., Gorkunov E.S. Mechanisms of the effect of internal and external stresses on the coercivity of ferromagnetic steels // Defectoskopiya. 1997. No. 11. P. 3—18.
- Mushnikov A. N., Mitropolskaya S. Yu. Influence of mechanical loading on the magnetic characteristics of pipe steels of different classes // Diagnostics, Resource and Mechanics of materials and structures. 2016. V. 4. P. 57—70. doi: 10.17804/2410-9908.2016.4.057-070
- Putilova E.A., Malygina K.D., Goruleva L.S., Kostin V.N., Vasilenko O.N., Perov V.N. Relationship between magnetic parameters and the recrystallization degree during annealing of pre-deformed nickel // Defectoskopiya. 2025. No. 6. P. 38—49.
- Perov V.N., Mikhaylov L.V., Kostin V.N., Povolotskaya A.M. Magnetic and magnetoacoustic parameters for estimating the degree of recrystallization and anisotropy // Defectoskopiya. 2025. No. 5. P. 68—74.
- Chou H. P.,Chang Y. S., Chen S. K., Yeh J. W. Microstructure, thermophysical and electrical properties in AlxCoCrFeNi (0 ≤ x ≤ 2) high-entropy alloys // Mater. Sci. Eng.-B. 2009. V. 163. P. 184.
- Rogachev A. S. Structure, Stability, and Properties of High-Entropy Alloys // Physics of Metals and Metallography. 2020. V. 121. No. 8. P. 733—764.
- Gorkunov E.S., Zadvorkin S.M., Putilova E.A. Magnetic estimation of stresses applied to a two-layer “steel St3 — steel 08Kh18N10T” composite material during elastoplastic deformation by uniaxial tension // Defectoskopiya. 2012. No. 8. P. 64—76.
- Shcherbinin V.E., Gorkunov E.S. Magnetic Quality. Control of Metals. Ekaterinburg: UrO RAN, 1996. 263 p.
Қосымша файлдар
