Efficiency of EEG-Guided Adaptive Neurostimulation Increases with the Optimization of the Parameters of Preliminary Resonant Scanning

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The development and improvement of closed-loop methods for non-invasive brain stimulation is an actual and rapidly developing area of neuroscience. An innovative version of this approach, in which a person is presented with audiovisual therapeutic stimulation, automatically modulated by the rhythmic components of his electroencephalogram (EEG), is EEG-guided adaptive neurostimulation. The present study aims to experimentally test the assumption that the effectiveness of EEG-guided adaptive neurostimulation can be increased by optimizing the parameters of preliminary resonance scanning, which consists of LED photostimulation with stepwise increasing frequency in the range of θ-, α-, and β EEG-rhythms. In order to test this assumption, we compared the effects of two types of resonance scanning, which differ in the step length of the gradually increasing frequency of LED photostimulation. The experiments involved two equal groups of university students in a state of exam stress. Before EEG-guided adaptive stimulation, one of the groups underwent resonance scanning with a short (3 s), and the other with a long (6 s) step of a gradual increase in the frequency of photostimulation. Changes in the EEG and psychophysiological parameters were analyzed under the influence of combined (resonance scanning plus EEG-guided adaptive neurostimulation) interventions relative to the initial level. It was found that only with a short (3 s) step of increasing the frequency of photostimulation, significant increases in the power of EEG-rhythms are observed, accompanied by significant changes in subjective indicators – a decrease in the number of errors in the word recognition test, a decrease in the level of emotional maladaptation, and an increase in well-being scores. The revealed positive effects are already observed after single therapeutic procedures due to the optimal conditions for the involvement of the resonant and integration mechanisms of the brain and the mechanisms of neuroplasticity in the processes of normalization of body functions. The developed combined approach to neurostimulation after additional experimental studies can be used in a wide range of rehabilitation procedures.

About the authors

A. I. Fedotchev

Institute of Cell Biophysics, RAS

Author for correspondence.
Email: fedotchev@mail.ru
Russia, Pushchino

S. A. Polevaya

National Research Nizhny Novgorod State University named after N.I. Lobachevsky

Email: fedotchev@mail.ru
Russia, Nizhny Novgorod

S. B. Parin

National Research Nizhny Novgorod State University named after N.I. Lobachevsky

Email: fedotchev@mail.ru
Russia, Nizhny Novgorod

References

  1. Farkhondeh Tale Navi F., Heysieattalab S., Ramanathan D.S. et al. Closed-loop Modulation of the Self-regulating Brain: A Review on Approaches, Emerging Paradigms, and Experimental Designs // Neuroscience. 2022. V. 483. P. 104.
  2. Wendt K., Denison T., Foster G. et al. Physiologically informed neuromodulation // J. Neurol. Sci. 2022. V. 434. P. 120121.
  3. Fedotchev A., Parin S., Polevaya S., Zemlianaia A. EEG-based musical neurointerfaces in the correction of stress-induced states // Brain-Computer Interfaces. 2021. V. 9. № 2. P. 1.
  4. Савчук Л.В., Полевая С.А., Парин С.Б. и др. Резонансное сканирование и анализ электроэнцефалограммы при определении зрелости корковой ритмики у младших школьников // Биофизика. 2022. Т. 67. № 2. С. 354. Savchuk L.V., Polevaya S.A., Parin S.B. et al. Resonance Scanning and Analysis of the Electroencephalogram in Determining the Maturity of Cortical Rhythms in Younger Schoolchildren // Biophysics. 2022. V. 67. № 2. P. 274.
  5. Kawala-Sterniuk A., Browarska N., Al-Bakri A. et al. Summary of over Fifty Years with Brain-Computer Interfaces. A Review // Brain Sci. 2021. V. 11. № 1. P. 43.
  6. Lejko N., Larabi D.I., Herrmann C.S. et al. Alpha Power and Functional Connectivity in Cognitive Decline: A Systematic Review and Meta-Analysis // J. Alzheimers Dis. 2020. V. 78. № 3. P. 1047.
  7. Polevaya S.A., Parin S.B., Zemlyanaya A.A., Fedotchev A.I. Dynamics of EEG reactions under combination of resonance scanning and adaptive neurostimulation in patients with post-COVID syndrome // Opera Med. Physiol. 2022. V. 9. № 2. P. 103.
  8. Доскин В.А., Лаврентьева Н.А., Мирошников М.Н., Шарай В.В. Тест дифференцированной самооценки функционального состояния // Вопросы психологии. 1973. Т. 19. № 6. С. 141. Doskin V.A., Lavrent’eva N.A., Miroshnikov M.N., Sharai V.V. [Differential self-assessment test for functional state] // Vopr. Psikhol. 1973. № 6. P. 141.
  9. Катаев А.А., Бахчина А.В., Полевая С.А., Федотчев А.И. Связь между субъективными и объективными оценками функционального состояния человека (апробация методики экспресс-оценки уровня стрессированности) // Вестник психофизиологии. 2017. № 2. С. 62. Kataev A.A., Bakhchina A.V., Polevaya S.A., Fedotchev A.I. [Сonnection between subjective and objective estimates of hunan functional state (approbation of rapid test for measurement of stress level)] // Psychophysiology News. 2017. № 2. P. 62.
  10. Zhang G., Cui Y., Zhang Y. et al. Computational exploration of dynamic mechanisms of steady state visual evoked potentials at the whole brain level // Neuroimage. 2021. V. 237. P. 118166.
  11. Coelli S., Tacchino G., Visani E. et al. Higher order spectral analysis of scalp EEG activity reveals non-linear behavior during rhythmic visual stimulation // J. Neural. Eng. 2019. V. 16. № 5. P. 056028.
  12. Nuidel I.V., Kolosov A.V., Demareva V.A., Yakhno V.G. Using a Phenomenological Mathematical Model to Reproduce the Interaction of Endogenous and Exogenous Oscillations under Neurocontrol // Modern Technol. Med. 2019. V. 11. № 1. P. 103.
  13. Otero M., Lea-Carnall C., Prado P. et al. Modelling neural entrainment and its persistence: influence of frequency of stimulation and phase at the stimulus offset // Biomed. Phys. Eng. Express. 2022. V. 8. № 4. https://doi.org/10.1088/2057-1976/ac605a
  14. Нарышкин А.Г., Галанин И.В., Егоров А.Ю. Управляемая нейропластичность // Физиология человека. 2020. Т. 46. № 2. С. 112. Naryshkin A.G., Galanin I.V., Egorov A.Yu. Controlled Neuroplasticity // Human Physiology. 2020. V. 46. № 2. P. 216.
  15. Tonti E., Budini M., Vingolo E.M. Visuo-Acoustic Stimulation’s Role in Synaptic Plasticity: A Review of the Literature // Int. J. Mol. Sci. 2021. V. 22. № 19. P. 10783.
  16. Sato N. Fast entrainment of human electroencephalogram to a theta-band photic flicker during successful memory encoding // Front. Hum. Neurosci. 2013. V. 7. P. 208.
  17. Otero M., Prado-Gutiérrez P., Weinstein A. et al. Persistence of EEG Alpha Entrainment Depends on Stimulus Phase at Offset // Front. Hum. Neurosci. 2020. V. 14. P. 139.
  18. Yoshimoto S., Jiang F., Takeuchi T. et al. Adaptation and visual discomfort from flicker // Vision Res. 2019. V. 160. P. 99.
  19. Zhuang X., Tran T., Jin D. et al. Aging effects on contrast sensitivity in visual pathways: A pilot study on flicker adaptation // PLoS One. 2021. V. 16. № 12. P. e0261927.
  20. Sanders P.J., Thompson B., Corballis P.M. et al. A review of plasticity induced by auditory and visual tetanic stimulation in humans // Eur. J. Neurosci. 2018. V. 48. № 4. P. 2084.
  21. Perenboom M.J., van de Ruit M., Zielman R. et al. Enhanced pre-ictal cortical responsivity in migraine patients assessed by visual chirp stimulation // Cephalalgia. 2020. V. 40. № 9. P. 913.
  22. Matsumoto H., Ugawa Y. Quadripulse stimulation (QPS) // Exp. Brain Res. 2020. V. 238. № 7–8. P. 1619.
  23. Takabatake K., Kunii N., Nakatomi H. et al. Musical Auditory Alpha Wave Neurofeedback: Validation and Cognitive Perspectives // Appl. Psychophysiol. Biofeedback. 2021. V. 46. № 4. P. 323.
  24. Takeuchi Y., Berényi A. Oscillotherapeutics – Time-targeted interventions in epilepsy and beyond // Neurosci. Res. 2020. V. 152. P. 87.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (1MB)
3.

Download (94KB)

Copyright (c) 2023 А.И. Федотчев, С.А. Полевая, С.Б. Парин

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».