Characteristics of Human Postactivation Effect of Skeletal Muscles Using Spectral and Non-Linear Parameters of the Surface Electromyogram

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Postactivation effect (PAE, postactivation phenomenon) is a specific type of involuntary muscle tone (tonic automatism) which is generated in the “tonogenic” structures of the brain, presumably without the “sensory copy” and “motor command” mechanisms. In this regard, the electromyogram (EMG) signal of PAE may have a simpler temporal signal structure compared to PAE-inducing voluntary activity. The purpose of this work is to characterize the temporal structure and complexity of surface EMG (sEMG) of the human deltoid and biceps brachii muscles using fractal (D) and correlation dimensions (Dc). It was found that in deltoid muscles the value of D was 1.78–1.81 both during PAE and voluntary effort (p > 0.05). Dc (approximately 4.0–4.2) also did not differ between PAE and voluntary effort, although the average frequency of the sEMG spectrum during PAE was 15–16 Hz (p < 0.05) higher compared to voluntary effort. In biceps brachii muscles, the D value was 1.8 during PAE and 1.62 during voluntary effort (p < 0.05). Dc values did not differ between PAE and voluntary contraction (4–4.8). Thus, despite the supposed difference in the central organization of PAE and voluntary effort, the temporal structure of their sEMG did not differ, indicating that isometric voluntary effort and involuntary tone in the form of PAE share a common principle of sEMG signal generation. At the same time, the differences in the frequency of the sEMG spectrum indicate that the organization of sEMG signal during PAE is specific on the level of the motoneuron pool.

全文:

受限制的访问

作者简介

A. Meigal

Petrozavodsk State University

编辑信件的主要联系方式.
Email: meigal@petrsu.ru
俄罗斯联邦, Petrozavodsk

A. Peskova

Petrozavodsk State University

Email: meigal@petrsu.ru
俄罗斯联邦, Petrozavodsk

A. Sklyarova

Petrozavodsk State University

Email: meigal@petrsu.ru
俄罗斯联邦, Petrozavodsk

L. Gerasimova-Meigal

Petrozavodsk State University

Email: meigal@petrsu.ru
俄罗斯联邦, Petrozavodsk

参考

  1. Kohnstamm O. Demonstration einer katatoneartigen Erscheinung beim Gesunden (Katatonusuersuch) // Neurol. Central. 1915. V. 34. P. 290.
  2. De Havas J., Ghosh A., Gomi H., Haggard P. Sensorimotor organization of a sustained involuntary movement // Front. Behav. Neurosci. 2015. V. 9. P. 185.
  3. De Havas J., Gomi H., Haggard P. Experimental investigations of control principles of involuntary movement: a comprehensive review of the Kohnstamm phenomenon // Exp. Brain Res. 2017. V. 235. № 7. P. 1953.
  4. Gurfinkel V.S., Levik Y.S., Lebedev M.A. [Immediate and remote postactivation effects in the human motor system] // Neurophysiology. 1989. V. 21. № 3. P. 343.
  5. Ukhtomskii A.A. [A special type of tonic reactions in human limbs]. Collection of works. Leningrad: Publishing House of LSU, 1962. V. 6. P. 43.
  6. Meigal A.Yu., Pis’mennyi K.N. The influence of whole body heating and cooling on the aftercontraction effect in the upper limb muscles // Human Physiology. 2009. V. 35. № 1. P. 51.
  7. Duclos C., Roll R., Kavounoudias A., Roll J.P. Cerebral correlates of the “Kohnstamm phenomenon”: an fMRI study // Neuroimage. 2007. V. 34. № 2. P. 774.
  8. Craske B., Craske J.D. Oscillator mechanisms in the human motor system: investigating their properties using the aftercontraction effect // J. Mot. Behav. 1986. V. 18. № 2. P. 117.
  9. Gilhodes J.C., Gurfinkel V.S., Roll J.P. Role of Ia muscle spindle afferents in post-contraction and post-vibration motor effect genesis // Neurosci. Lett. 1992. V. 135. № 2. P. 247.
  10. Boon M.Y., Henry B.I., Suttle C.M., Dain S.J. The correlation dimension: a useful objective measure of the transient visual evoked potential? // J. Vis. 2008. V. 8. № 1. doi: 10.1167/8.1.6
  11. Gitter J.A., Czemiecki M.J. Fractal analysis of the electromyographic interference pattern // J. Neurosci. Methods. 1995. V. 58. № 1–2. P. 103.
  12. Cui X., Gu S.-J., Cao J. et al. Correlation entropy and the Kosterlitz–Thouless transition // J. Phys. A: Math. Theor. 2007. V. 40. № 45. P. 13523.
  13. Kozhina G.V., Person R.S., Popov K.E. et al. Motor unit discharge during muscular after-contraction // J. Electromyogr. Kinesiol. 1996. V. 6. № 3. P. 169.
  14. Farina D., Merletti R., Enoka R.M. The extraction of neural strategies from the surface EMG: An update // J. Appl. Physiol. 2014. V. 117. № 11. P. 1215.
  15. Meigal A.Yu., Gerasimova-Meigal L.I., Peskova A.E. Postactivation effect in the deltoid muscle of healthy young subjects after a short-term “dry” immersion // Human Physiology. 2021. V. 47. № 3. P. 289.
  16. Brice T., McDonagh M. Abduction of the humerus by postural aftercontractions in man: effects of force and duration of previous voluntary contractions // J. Physiol. (London). 2001. V. 536. P. 214.
  17. Meigal A.Yu., Zaripova Yu.R. Influence of postconceptual age on the electromyographic characteristics in newborns // Human Physiology. 2013. V. 39. № 3. P. 278.
  18. Gandevia S.C. Spinal and supraspinal factors in human muscle fatigue // Physiol. Rev. 2001. V. 81. № 4. P. 1725.
  19. Ikegawa S., Shinohara M., Fukunaga T. et al. Nonlinear time-course of lumbar muscle fatigue using recurrence quantifications // Biol. Cybern. 2000. V. 82. № 5. P. 373.
  20. Del Santo F., Gelli F., Mazzocchio R., Rossi A. Recurrence quantification analysis of surface EMG detects changes in motor unit synchronization induced by recurrent inhibition // Exp. Brain Res. 2007. V. 178. № 3. P. 308.
  21. Fuglsang-Frederiksen A. The utility of interference pattern analysis // Muscle Nerve. 2000. V. 23. № 1. P. 18.
  22. Fuglsang-Frederiksen A., Dahl K., Lo Monaco M. Electrical muscle activity during a gradual increase in force in patients with neuromuscular diseases // Electroencephalogr. Clin. Neurophysiol. 1984. V. 57. № 4. P. 320.
  23. Mochizuki G., Ivanova T.D., Garland S.J. Synchronization of motor units in human soleus muscle during standing postural tasks // J. Neurophysiol. 2005. V. 94. № 1. P. 62.
  24. Mesin L., Cescon C., Gazzoni M. et al. A bi-dimensional index for the selective assessment of myoelectric manifestations of peripheral and central muscle fatigue // J. Electromyogr. Kinesiol. 2009. V. 19. № 5. P. 851.
  25. Beretta-Piccoli M., D’Antona G., Barbero M. et al. Evaluation of central and peripheral fatigue in the quadriceps using fractal dimension and conduction velocity in young females // PLoS One. 2015. V. 10. № 4. P. e0123921.
  26. Beretta-Piccoli M., Boccia G., Ponti T. et al. Relationship between isometric muscle force and fractal dimension of surface electromyogram // Biomed Res. Int. 2018. V. 2018. P. 5373846.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Example of the postactivation effect (PAE) of the right (A) and left (B) deltoid muscles. The PAE began 7 s after the end of voluntary activity and continued synchronously in both muscles for 57 s. Time calibration is 5 s, electromyogram (EMG) amplitude is 500 μV. Horizontal lines indicate the location of the interference EMG sample collection for analysis (5 s).

下载 (180KB)
3. Fig. 2. Example of the postactivation effect (PAE) of the right biceps brachii. The PAE began 5 s after the end of voluntary activity and continued for 71 s. Time calibration was 5 s, electromyogram amplitude was 500 μV.

下载 (82KB)
4. Fig. 3. Example of post-activation effect (PAE) of deltoid muscles (A – right side, B – left side) with several “waves” of activity. The first wave was considered “near” PAE, the rest – “remote” PAE. Time calibration 5 s, EMG amplitude 500 μV.

下载 (150KB)
5. Fig. 4. Examples of the interference electromyogram (iEMG) signal during voluntary effort (A) and postactivation effect (PAE) (B) of the right deltoid muscle. For voluntary effort, the average spectrum frequency was 56.5 Hz, for PAE – 68.2 Hz. Time calibration was 100 ms, EMG amplitude was 250 μV.

下载 (151KB)

版权所有 © Russian Academy of Sciences, 2024

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».