Общность синдрома перетренированности и синдрома относительного дефицита энергии в спорте (REDs). Анализ литературы
- Авторы: Гаврилова Е.А.1, Чурганов О.А.1, Павлова О.Ю.1, Брынцева Е.В.1, Рассказова А.В.1, Горкин М.В.1, Саркисов А.К.1, Дидора А.Б.1, Шитова В.И.1
-
Учреждения:
- Северо-Западный государственный медицинский университет имени И.И. Мечникова
- Выпуск: Том 50, № 6 (2024)
- Страницы: 80-91
- Раздел: ОБЗОРЫ
- URL: https://journal-vniispk.ru/0131-1646/article/view/273013
- DOI: https://doi.org/10.31857/S0131164624060095
- EDN: https://elibrary.ru/AFNAHV
- ID: 273013
Цитировать
Аннотация
Цель данного обзора – анализ литературы по сравнению клинических проявлений синдрома перетренированности (СП) и синдрома относительного дефицита энергии в спорте (REDs). Поиск и анализ публикаций из двух литературных баз (PubMed и Elibrary.ru) по СП и REDs. Отбор работ для анализа осуществлялся из 514 статей двух литературных баз по проблеме общности СП и REDs, связи данных синдромов, а также вопросам нарушения доступности энергии и пищевых веществ при СП. Проведен сравнительный анализ клинических проявлений двух синдромов и доказательства гипотезы о том, что относительный дефицит энергии в спорте – это одна из причин (теорий) развития у спортсмена синдрома перетренированности. Анализ литературы показал, что REDs можно считать проявлением СП, а относительный дефицит энергии в спорте (REDs) – это лишь одна из причин (теорий) развития у спортсменов синдрома перетренированности, наряду с другими теориями (цитокиновая, окислительного стресса, утомления центральной нервной системы и др.).
Полный текст

Об авторах
Е. А. Гаврилова
Северо-Западный государственный медицинский университет имени И.И. Мечникова
Автор, ответственный за переписку.
Email: gavrilovaea@mail.ru
Россия, Санкт-Петербург
О. А. Чурганов
Северо-Западный государственный медицинский университет имени И.И. Мечникова
Email: gavrilovaea@mail.ru
Россия, Санкт-Петербург
О. Ю. Павлова
Северо-Западный государственный медицинский университет имени И.И. Мечникова
Email: gavrilovaea@mail.ru
Россия, Санкт-Петербург
Е. В. Брынцева
Северо-Западный государственный медицинский университет имени И.И. Мечникова
Email: gavrilovaea@mail.ru
Россия, Санкт-Петербург
А. В. Рассказова
Северо-Западный государственный медицинский университет имени И.И. Мечникова
Email: gavrilovaea@mail.ru
Россия, Санкт-Петербург
М. В. Горкин
Северо-Западный государственный медицинский университет имени И.И. Мечникова
Email: gavrilovaea@mail.ru
Россия, Санкт-Петербург
А. К. Саркисов
Северо-Западный государственный медицинский университет имени И.И. Мечникова
Email: gavrilovaea@mail.ru
Россия, Санкт-Петербург
А. Б. Дидора
Северо-Западный государственный медицинский университет имени И.И. Мечникова
Email: gavrilovaea@mail.ru
Россия, Санкт-Петербург
В. И. Шитова
Северо-Западный государственный медицинский университет имени И.И. Мечникова
Email: gavrilovaea@mail.ru
Россия, Санкт-Петербург
Список литературы
- McKenzie R.T. The place of manipulation and corrective gymnastics in treatment // Cal. State J. Med. 1923. V. 21. № 11. P. 480.
- Carrard J., Rigort A.C., Appenzeller-Herzog C. et al. Diagnosing overtraining syndrome: A scoping review // Sports Health. 2022. V. 14. № 5. P. 665.
- Cadegiani F.A., da Silva P.H., Abrao T.C., Kater C.E. Diagnosis of overtraining syndrome: results of the endocrine and metabolic responses on overtraining syndrome study: EROS-DIAGNOSIS // J. Sports Med. 2020. V. 2020. P. 3937819.
- Cadegiani F.A., Kater C.E. Eating, sleep, and social patterns as independent predictors of clinical, metabolic, and biochemical behaviors among elite male athletes: The EROS-PREDICTORS study // Front. Endocrinol. (Lausanne). 2020. V. 11. P. 414.
- Yeager K.K., Agostini R., Nattiv A., Drinkwater B. The female athlete triad: disordered eating, amenorrhea, osteoporosis // Med. Sci. Sports Exerc. 1993. V. 25. № 7. P. 775.
- Otis C.L., Drinkwater B., Johnson M. et al. American college of sports medicine position stand. The female athlete triad // Med. Sci. Sports Exerc. 1997. V. 29. № 5. P. i-ix.
- Mountjoy M., Sundgot-Borgen J., Burke L. et al. The IOC consensus statement: Beyond the female athlete triad-Relative Energy Deficiency in Sport (RED-S) // Br. J. Sports Med. 2014. V. 48. № 7. P. 491.
- Mountjoy M., Sundgot-Borgen J.K., Burke L.M. et al. IOC consensus statement on relative energy deficiency in sport (RED-S) // Br. J. Sports Med. 2018. V. 52. № 11. P. 687.
- Mountjoy M., Ackerman K.E., Bailey D.M. et al. 2023 International Olympic Committee's (IOC) consensus statement on Relative Energy Deficiency in Sport (REDs) // Br. J. Sports Med. 2023. V. 57. № 17. P. 1073.
- Stellingwerff T., Heikura I.A., Meeusen R. et al. Overtraining Syndrome (OTS) and Relative Energy Deficiency in Sport (RED-S): Shared pathways, symptoms and complexities // Sports Med. 2021. V. 51. № 11. P. 2251.
- Weakley J., Halson S.L., Mujika I. Overtraining Syndrome symptoms and diagnosis in athletes: where is the research? A systematic review // Int. J. Sports Physiol. Perform. 2022. V. 17. № 5. P. 675.
- Colangelo J., Smith A., Buadze A. et al. Mental health disorders in ultra endurance athletes per ICD-11 classifications: A review of an overlooked community in sports psychiatry // Sports (Basel). 2023. V. 11. № 3. P. 52.
- Baker C., Hunt J., Piasecki J., Hough J. Lymphocyte and dendritic cell response to a period of intensified training in young healthy humans and rodents: A systematic review and meta-analysis // Front. Physiol. 2022. V. 13. P. 998925.
- Vrijkotte S., Roelands B., Pattyn N., Meeusen R. The Overtraining Syndrome in soldiers: Insights from the sports domain // Mil. Med. 2019. V. 184. № 5–6. P. 192.
- Luti S., Modesti A., Modesti P.A. Inflammation, peripheral signals and redox homeostasis in athletes who practice different sports // Antioxidants (Basel). 2020. V. 9. № 11. P. 1065.
- Magherini F., Fiaschi T., Marzocchini R. et al. Oxidative stress in exercise training: The involvement of inflammation and peripheral signals // Free Radic. Res. 2019. V. 53. № 11–12. P. 1155.
- Grandou C., Wallace L., Impellizzeri F.M. et al. Overtraining in resistance exercise: An exploratory systematic review and methodological appraisal of the literature // Sports Med. 2020. V. 50. № 4. P. 815.
- Mazaheri R., Schmied C., Niederseer D., Guazzi M. Cardiopulmonary exercise test parameters in athletic population: A review // J. Clin. Med. 2021. V. 10. № 21. P. 5073.
- Hopen S.R. Intrafasciomembranal fluid pressure: A novel approach to the etiology of myalgias // Cureus. 2022. V. 14. № 8. P. е28475.
- Armstrong L.E., Bergeron M.F., Lee E.C. et al. Overtraining Syndrome as a complex systems phenomenon // Front. Netw. Physiol. 2022. V. 1. P. 794392.
- Hackney A.C. Hypogonadism in exercising males: Dysfunction or adaptive-regulatory adjustment? // Front. Endocrinol. (Lausanne). 2020. V. 11. P. 11.
- Madzar T., Masina T., Zaja R. et al. Overtraining Syndrome as a risk factor for bone stress injuries among paralympic athletes // Medicina (Kaunas). 2023. V. 60. № 1. P. 52.
- la Torre M.E., Monda A., Messina A. et al. The potential role of nutrition in Overtraining Syndrome: A narrative review // Nutrients. 2023. V. 15. № 23. P. 4916.
- Cheng A.J., Jude B., Lanner J.T. Intramuscular mechanisms of overtraining // Redox. Biol. 2020. V. 35. P. 101480.
- Brun J.F. Exercise hemorheology as a three acts play with metabolic actors: is it of clinical relevance? // Clin. Hemorheol. Microcirc. 2002. V. 26. № 3. P. 155.
- Mao Y.H., Wang M., Yuan Y. et al. Konjac glucomannan counteracted the side effects of excessive exercise on gut microbiome, endurance, and strength in an overtraining mice model // Nutrients. 2023. V. 15. № 19. P. 4206.
- Hou P., Zhou X., Yu L. et al. Exhaustive exercise induces gastrointestinal syndrome through reduced ILC3 and IL-22 in mouse model // Med. Sci. Sports Exerc. 2020. V. 52. № 8. P. 1710.
- Nicoll J.X., Hatfield D.L., Melanson K.J., Nasin C.S. Thyroid hormones and commonly cited symptoms of overtraining in collegiate female endurance runners // Eur. J. Appl. Physiol. 2018. V. 118. № 1. P. 65.
- Melchiorri G., Viero V., Sorge R. et al. Body composition analysis to study long-term training effects in elite male water polo athletes // J. Sports Med. Phys. Fitness. 2018. V. 58. № 9. P. 1269.
- Coelho A.R., Cardoso G., Brito M.E. et al. The female athlete triad/Relative Energy Deficiency in Sports (RED-S) // Rev. Bras. Ginecol. Obstet. 2021. V. 43. № 5. P. 395.
- Vardardottir B., Gudmundsdottir S.L., Olafsdottir A.S. Health and performance consequences of Relative Energy Deficiency in Sport (REDs) // Laeknabladid. 2020. V. 106. № 9. P. 406.
- Gould R.J., Ridout A.J., Newton J.L. Relative Energy Deficiency in Sport (RED-S) in adolescents – A practical review // Int. J. Sports Med. 2023. V. 44. № 4. P. 236.
- Sim A., Burns S. Review: Questionnaires as measures for low energy availability (LEA) and relative energy deficiency in sport (RED-S) in athletes // J. Eat. Disord. 2021. V. 9. № 1. P. 41.
- Logue D., Madigan S., Melin A. et al. Low energy availability in athletes 2020: An updated narrative review of prevalence, risk, within-day energy balance, knowledge, and impact on sports performance // Nutrients. 2020. V. 12. № 3. P. 835.
- Maya J., Misra M. The female athlete triad: review of current literature // Curr. Opin. Endocrinol. Diabetes Obes. V. 29. № 1. P. 44.
- Lodge M., Ward-Ritacco C., Melanson K. Considerations of Low Carbohydrate Availability (LCA) to Relative Energy Deficiency in Sport (RED-S) in female endurance athletes: A narrative review // Nutrients. 2023. V. 15. № 20. P. 4457.
- Costa T., Borba V., Correa P., Moreira C. Stress fractures // Arch. Endocrinol. Metab. 2022. V. 66. № 5. P. 765.
- Heikura I., Stellingwerff T., Areta J. Low energy availability in female athletes: From the lab to the field // Eur. J. Sport Sci. V. 22. № 5. P. 709.
- Warden S.J., Edwards W.B., Willy R.W. Preventing bone stress injuries in runners with optimal workload // Curr. Osteoporos. Rep. 2021. V. 19. № 3. P. 298.
- Areta J.L, Taylor H.L., Koehler K. Low energy availability: History, definition and evidence of its endocrine, metabolic and physiological effects in prospective studies in females and males // Eur. J. Appl. Physiol. 2021. V. 121. № 1. P. 1.
- Jagim A.R., Fields J., Magee M.K. et al. Contributing factors to low energy availability in female athletes: A narrative review of energy availability, training demands, nutrition barriers, body image, and disordered eating // Nutrients. 2022. V. 14. № 5. P. 986.
- Jonvik K.L., Vardardottir B., Broad E. How do we assess energy availability and RED-S risk factors in para athletes? // Nutrients. 2022. V. 14. № 5. P. 1068.
- Ackerman K.E., Rogers M.A., Heikura I.A. et al. Methodology for studying Relative Energy Deficiency in Sport (REDs): A narrative review by a subgroup of the International Olympic Committee (IOC) consensus on REDs // Br. J. Sports Med. 2023. V. 57. № 17. P. 1136.
- O'Leary T.J., Wardle S.L., Greeves J.P. Energy deficiency in soldiers: The risk of the athlete triad and relative energy deficiency in sport syndromes in the military // Front. Nutr. 2020. V. 7. P. 142.
- Mathisen T.F., Ackland T., Burke L.M. et al. Best practice recommendations for body composition considerations in sport to reduce health and performance risks: A critical review, original survey and expert opinion by a subgroup of the IOC consensus on Relative Energy Deficiency in Sport (REDs) // Br. J. Sports Med. 2023. V. 57. № 17. P. 1148.
- Grabia M., Perkowski J., Socha K., Markiewicz-Żukowska R. Female athlete triad and Relative Energy Deficiency in Sport (REDs): Nutritional management // Nutrients. 2024. V. 16. № 3. P. 359.
- Langan-Evans C., Reale R., Sullivan J., Martin D. Nutritional considerations for female athletes in weight category sports // Eur. J. Sport Sci. 2022. V. 22. № 5. P. 720.
- De Souza M.J., Koltun K.J., Williams N.I. The role of energy availability in reproductive function in the female athlete triad and extension of its effects to men: An initial working model of a similar syndrome in male athletes // Sports Med. 2019. V. 49. № 2. P. 125.
- Hutson M.J., O'Donnell E., Brooke-Wavell K. et al. Effects of low energy availability on bone health in endurance athletes and high-impact exercise as a potential countermeasure: A narrative review // Sports Med. 2021. V. 51. № 3. P. 391.
- Watkins R.A., Guillen R.V. Primary care considerations for the pediatric endurance athlete // Curr. Rev. Musculoskelet. Med. 2024. V. 17. № 3. P. 76.
- Hamstra-Wright K.L., Huxel Bliven K.C., Napier C. Training load capacity, cumulative risk, and bone stress injuries: A narrative review of a holistic approach // Front. Sports Act. Living. 2021. V. 3. P. 665683.
- Cadegiani F.A., Kater C.E. Body composition, metabolism, sleep, psychological and eating patterns of overtraining syndrome: Results of the EROS study (EROS-PROFILE) // J. Sports Sci. 2018. V. 36. № 16. Р. 1902.
- Rogero M.M., Mendes R.R., Tirapegui J. Aspectos neuroendócrinos e nutricionais em atletas com overtraining (Neuroendocrine and nutritional aspects of overtraining) // Arq. Bras. Endocrinol. Metabol. 2005. V. 49. № 3. Р.359.
- Zaryski C., Smith D.J. Training principles and issues for ultra-endurance athlete // Curr. Sports Med. Rep. 2005. V. 4. № 3. Р. 165.
- Walsh N.P., Blannin A.K., Robson P.J., Gleeson M. Glutamine, exercise and immune function. Links and possible mechanisms // Sports Med. 1998. V. 26. № 3. Р. 177.
- Talvas J., Norgieux C., Burban E. еt al. Vitamin D deficiency contributes to overtraining syndrome in excessive trained C57BL/6 mice // Scand. J. Med. Sci. Sports. 2023. V. 33. № 11. P. 2149.
- Cupka M., Sedliak M. Hungry runners – low energy availability in male endurance athletes and its impact on performance and testosterone: Mini-review // Eur. J. Transl. Myol. 2023. V. 33. № 2. P. 11104.
- Varlet-Marie E., Maso F., Lac G., Brun J.F. Hemorheological disturbances in the overtraining syndrome // Clin. Hemorheol. Microcirc. 2004. V. 30. № 3–4. P. 211.
- Solomon M.L., Briskin S.M., Sabatina N., Steinhoff J.E. The pediatric endurance athlete // Curr. Sports Med. Rep. 2017. V. 16. № 6. P. 428.
- Gleeson M. Biochemical and immunological markers of overtraining // J. Sports Sci. Med. 2002. V. 1. № 2. P. 31.
- Гаврилова Е.А., Чурганов О.А., Белодедова М.Д. и др. Внезапная сердечная смерть в спорте. Современные представления // Теория и практика физической культуры. 2021. № 5. С. 76.
- Solomon M.L., Weiss Kelly A.K. Approach to the underperforming athlete // Pediatr. Ann. 2016. V. 45. № 3. P. e91.
- Indirli R., Lanzi V., Mantovani G. et al. Bone health in functional hypothalamic amenorrhea: What the endocrinologist needs to know // Front. Endocrinol. (Lausanne). 2022. V. 13. P. 946695.
- Maïmoun L., Paris F., Coste O., Sultan C. Sport intensif et troubles du cycle chez la jeune femme: Retentissement sur la masse osseus (Intensive training and menstrual disorders in young female: Impact on bone mass) // Gynecol. Obstet. Fertil. 2016. V. 44. № 11. P. 659.
- Lania A., Gianotti L., Gagliardi I. et al. Functional hypothalamic and drug-induced amenorrhea: An overview // J. Endocrinol. Invest. 2019. V. 42. № 9. P. 1001.
- Keizer H.A., Rogol A.D. Physical exercise and menstrual cycle alterations. What are the mechanisms? // Sports Med. 1990. V. 10. № 4. P. 218.
- Grandys M., Majerczak J., Frolow M. et al. Training-induced impairment of endothelial function in track and field female athletes // Sci. Rep. 2023. V. 13. № 1. P. 3502.
- Cannavò S., Curtò L., Trimarchi F. Exercise-related female reproductive dysfunction // J. Endocrinol. Invest. 2001. V. 24. № 10. P. 823.
- Maïmoun L., Georgopoulos N.A., Sultan C. Endocrine disorders in adolescent and young female athletes: Impact on growth, menstrual cycles, and bone mass acquisition // J. Clin. Endocrinol. Metab. 2014. V. 99. № 11. P. 4037.
- Lambert B.S., Cain M.T., Heimdal T. et al. Physiological parameters of bone health in elite ballet dancers // Med. Sci. Sports Exerc. 2020. V. 52. № 8. P. 1668.
- Hackney A.C., Hooper D.R. Low testosterone: Androgen deficiency, endurance exercise training, and competitive performance // Physiol. Int. 2019. V. 106. № 4. Р. 379.
- Fry A.C., Kraemer W.J., Ramsey L.T. Pituitary-adrenal-gonadal responses to high-intensity resistance exercise overtraining // J. Appl. Physiol. 1998. V. 85. № 6. Р. 2352.
- Hooper D.R., Kraemer W.J., Stearns R.L. et al. Evidence of the Exercise-Hypogonadal Male Condition at the 2011 Kona Ironman World Championships // Int. J. Sports Physiol. Perform. 2019. V. 14. № 2. P. 170.
- Hooper D.R., Kraemer W.J., Stearns R.L. et al. Evidence of the exercise-hypogonadal male condition at the 2011 Kona Ironman World Championships // Int. J. Sports Physiol. Perform. 2019. V. 14. № 2. Р. 170.
- Roberts A.C., McClure R.D., Weiner R.I., Brooks G.A. Overtraining affects male reproductive status // Fertil. Steril. 1993. V. 60. № 4. Р. 686.
- Roberts A.C., McClure R.D., Weiner R.I., Brooks G.A. Overtraining affects male reproductive status // Fertil. Steril. 1993. V. 60. № 4. Р. 686.
- Miyamoto M., Shibuya K. Sleep duration has a limited impact on the prevalence of menstrual irregularities in athletes: A cross-sectional study // Peer. J. 2024. V. 12. P. e16976.
- Безуглов Э.Н. Синдром относительного дефицита энергии в спорте: руководство для врачей. М.: ГЭОТАР-Медиа, 2023. 160 c.
- Brenner J.S., Watson A. Overuse Injuries, overtraining, and burnout in young athletes // Pediatrics. 2024. V. 153. № 2. P. e2023065129.
- Stellingwerff T., Heikura I.A., Meeusen R. et al. Overtraining Syndrome (OTS) and Relative Energy Deficiency in Sport (RED-S): Shared pathways, symptoms and complexities // Sports Med. 2021. V. 51. № 11. Р. 2251.
Дополнительные файлы
