Comparison of somnological parameters obtained using sports watches POLAR VANTAGE V and polysomnography method

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Synchronous registration of sleep parameters in practically healthy young womens was carried out using polysomnography and by recording the rhythmocardiographic activity of the sleeping body using a Polar Vantage V sports watch. The data obtained were compared in pairs, using the Spearman rank correlation method and by epoch-by-epoch comparison of sleep phase coincidence indicators. A high degree of correspondence was revealed with the total duration of sleep, time spent in bed, sleep efficiency values and the total duration of short-term awakenings recorded by the two above-mentioned methods. The mode of epoch-by-epoch comparison of the periods of coincidence of the Rem phases, as well as the N2 and N3 phases during polysomnographic and rhythmocardiographic registration, brought results not exceeding 60%.

About the authors

A. N. Vjotosh

Sechenov Institute of Evolutionary Physiology and Biochemistry of the RAS; Lesgaft National State University of Physical Education, Sport and Health

Email: vjotnn@yahoo.com
St. Peterburg, Russia; St. Peterburg, Russia

A. B. Petrov

Lesgaft National State University of Physical Education, Sport and Health

Email: vjotnn@yahoo.com
St. Peterburg, Russia

S. A. Djubenkov

Lesgaft National State University of Physical Education, Sport and Health

Email: vjotnn@yahoo.com
St. Peterburg, Russia

O. V. Tikhomirova

Nikiforov Russian Center of Emergency and Radiation Medicine

Author for correspondence.
Email: vjotnn@yahoo.com
St. Peterburg, Russia

References

  1. Vein A.M. [Waking ang sleep]. M.: Nauka, 1970. 125 p.
  2. Stone J.D., Rentz L.E., Forsley J. et al. Evaluations of commercial sleep tehnologies for objective monitoring during routine sleeping conditions // Nat. Sci. Sleep. 2020. V. 12. P. 821.
  3. Karmanova I.G., Oganesyan G.A. [Physiology and Pathology of the Sleep-Wake Cycle. Evolutionary Aspects]. М.: Nauka, 1994. 200 p.
  4. Kovalzon V.M. [Basics of Somnology]. M.: “Laboratoriya znanii”, 2012. 239 p.
  5. Vjotosh A.N., Petrov A.B., Kotova A.S., Tikhomiro-va O.V. Possibilities and Limitations on Using Sleep Cycle Smartphone Apps for Sleep Analysis in Sports Practice // Human Physiology. 2023. V. 49. № 6. P. 663.
  6. Ameen M.S., Cheung L.M., Hauser T. et al. About the accuracy and problems of consumer devices in the assessment of sleep // Sensors. 2019. V. 19. № 19. P. 4160.
  7. Chinoy E.D., Cuellar J.A., Jameson J.T., Mark- wald R.R. Performance of four commercial wearable sleep-tracking devices tested under unrestricted conditions at home in healthy young adults // Nat. Sci. Sleep. 2022. V. 14. P. 493.
  8. Miller D.J., Sargent C., Roach G.D. A validation of six wearable devices for estimating sleep, heart rate and heart rate variability in healthy adults // Sensors. 2022. V. 22. № 16. P. 6317.
  9. Kushida C.F., Littner M.R., Morgenthaler T. et al. Practice parameters for the indications for polysomnography and related procedures: An update for 2005 // Sleep. 2005. V. 28. № 4. P. 499.
  10. Lee J.-M., Byun W., Keill A. et al. Comparison of wearable trackers’ ability to estimate sleep // Int. J. Envir. Res. Public Health. 2018. V. 15. № 6. P. 1265.
  11. Chinoy E.D., Cuellar J.A., Jameson J.T., Mark- wald R.R. Daytime sleep-tracking performance of four commercial wearable devices during unrestricted home sleep // Nat. Sci. Sleep. 2023. V. 15. P. 151.
  12. Radha M., Fonseca P., Moreau A. et al. Sleep stage classification from heart-rate variability using long short-term memory neural networks // Sci. Rep. 2019. V. 9. № 1. P. 14149.
  13. Li D., Ruan Y., Zheng F. et al. Fast sleep stage classification using cascaded support vector machines with single-channel EEG signals // Sensors. 2022. V. 22. № 24. P. 9914.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).