Low Prevalence of Postactivation Effect (Kohnstamm Phenomenon) in People with Parkinson’s Disease May be Associated with Bradykinesia

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The study was aimed at exploring the prevalence and characteristics of the postactivation effect (PAE) in the deltoid muscles (DM) among individuals with Parkinson’s disease (PD) and its possible correlation with PD symptoms using surface electromyography (sEMG), in the off- and on-medication phases. Ten of 29 of individuals with PD (34.5%) were PAE-positive, since PAE was triggered in them. The duration of PAE was different on the right and left sides in 5 of 10 paPAE-positive participants, and was 46 ± 30.1 s for the right and 47.2 ± 27.5 s for the left side, the latency of PAE was 0.5–2.4 s. The prevalence, duration and amplitude of EMG during PAE did not differ in the states “before” and “after” taking antiparkinsonian therapy. The severity of bradykinesia according to the UPDRS score was lower in the group of PAE-positive participants (1.35 ± 0.9) compared to the PAE-negative ones (2.11 ± 0.6; p < 0.01). The severity of bradykinesia was inversely correlated with the duration of PAE, and akinesia was inversely correlated with the amplitude of the PAE EMG. The results prompt that in individuals with PD PAE is likely inhibited by mechanisms associated with bradykinesia.

About the authors

A. Yu Meigal

Petrozavodsk State University

Author for correspondence.
Email: meigal@petrsu.ru
ORCID iD: 0000-0003-2088-5101
Dr. Sci. (Medicine), professor, Head of the Department Petrozavodsk, Russian Federation

L. I Gerasimova-Meigal

Petrozavodsk State University

Email: gerasimova@petrsu.ru
ORCID iD: 0000-0002-3677-3764
Dr. Sci. (Medicine), professor Petrozavodsk, Russian Federation

E. G Antonen

Petrozavodsk State University

Email: antonen@petrsu.ru
ORCID iD: 0000-0002-9445-0752
Dr. Sci. (Medicine), professor, Head of the Department Petrozavodsk, Russian Federation

A. E Peskova

Petrozavodsk State University

Email: peskova@petrsu.ru
ORCID iD: 0009-0008-0000-8738
specialist Petrozavodsk, Russian Federation

References

  1. Kohnstamm O. Demonstration einer katatoneartigen erscheinung beim gesunden (Katatonusversuch). Neurol. Central. 1915. V. 34. P. 290.
  2. De Havas J., Gomi H., Haggard P. Experimental investigations of control principles of involuntary movement: A comprehensive review of the Kohnstamm phenomenon. Exp. Brain Res. 2017. V. 235. № 7. P. 1953.
  3. Duclos C., Roll R., Kavounoudias A., Roll J.P. Cerebral correlates of the “Kohnstamm phenomenon”: An fMRI study. Neuroimage. 2007. V. 34. № 2. P. 774.
  4. Gurfinkel' V.S., Levik Iu.S., Lebedev M.A. [Immediate and remote postactivation effects in the human motor system]. Neirofiziologiia. 1989. V. 21. № 3. P. 343. (In Russ.)
  5. McDonagh M., Parkinson A. Levitating arms: Unravelling the mystery: A Christmas party trick with an intriguing history and physiology. Physiol. News. 2008. V. 73. P. 12.
  6. Ribot-Ciscar E., Roll J.P., Gilhodes J.C. Human motor unit activity during post-vibratory and imitative voluntary muscle contractions. Brain Res. 1996. V. 716. № 1–2. P. 84.
  7. Kozhina G.V., Person R.S., Popov K.E. et al. Motor unit discharge during muscular after-contraction. J. Electromyogr. Kinesiol. 1996. V. 6. № 3. P. 169.
  8. Meigal A., Gerasimova-Meigal L., Kuzmina A. et al. Electromyographic characteristics of postactivation effect in dopamine-dependent spectrum models observed in Parkinson’s disease and schizophrenia. Biomedicines. 2024. V. 12. № 6. P. 1338.
  9. Meigal A.Yu., Gerasimova-Meigal L.I., Peskova A.E. Postactivation effect in the deltoid muscle of healthy young subjects after a short-term “dry” immersion. Human Physiology. 2021. V. 47. № 3. P. 289. (In Russ.)
  10. De Havas J., Ghosh A., Gomi H., Haggard P. Sensorimotor organization of a sustained involuntary movement. Front. Behav. Neurosci. 2015. V. 9. P. 185.
  11. Adamson G., McDonagh M. Human involuntary postural aftercontractions are strongly modulated by limb position. Eur. J. Appl. Physiol. 2004. V. 92. № 3. P. 343.
  12. Meigal A.Yu., Pis’mennyi K.N. The influence of whole-body heating and cooling on the aftercontraction effect in the upper limb muscles. Human Physiology. 2009. V. 35. № 1. P. 51. (In Russ.)
  13. Craske B., Craske J.D. Oscillator mechanisms in the human motor system: Investigating their properties using the aftercontraction effect. J. Mot. Behav. 1986. V. 18. № 2. P. 117.
  14. Selionov V.A., Ivanenko Y.P., Solopova I.A., Gurfinkel V.S. Tonic central and sensory stimuli facilitate involuntary air-stepping in humans. J. Neurophysiol. 2009. V. 101. № 6. P. 2847.
  15. Solopova I.A., Selionov V.A., Zhvansky D.S. et al. Human cervical spinal cord circuitry activated by tonic input can generate rhythmic arm movements. J. Neurophysiol. 2016. V. 115. № 2. P. 1018.
  16. Baradaran N., Tan S.N., Liu A. et al. Parkinson’s disease rigidity: Relation to brain connectivity and motor performance. Front. Neurol. 2013. V. 4. P. 67.
  17. Needle A.R., Baumeister J., Kaminski T.W. et al. Neuromechanical coupling in the regulation of muscle tone and joint stiffness. Scand. J. Med. Sci. Sports. 2014. V. 24. № 5. P. 737.
  18. Ungvari S., Goggins W., Leung S.K., Gerevich J. Schizophrenia with prominent catatonic features ('catatonic schizophrenia'). II. Factor analysis of the catatonic syndrome. Prog. Neuropsychopharmacol. Biol. Psychiatry. 2007. V. 31. № 2. P. 462.
  19. Hemsley K.M., Farrall E.J., Crocker A.D. Dopamine receptors in the subthalamic nucleus are involved in the regulation of muscle tone in the rat. Neurosci. Lett. 2002. V. 317. № 3. P. 123.
  20. Schwarz P.B., Peever J.H. Dopamine triggers skeletal muscle tone by activating D1-like receptors on somatic motoneurons. J. Neurophysiol. 2011. V. 106. № 3. P. 1299.
  21. Braak H., Del Tredici K., Rüb U. et al. Staging of brain pathology related to sporadic Parkinson's disease. Neurobiol. Aging. 2003. V. 24. № 2. P. 197.
  22. Cantello R., Gianelli M., Civardi C., Mutani R. Parkinson's disease rigidity: EMG in a small hand muscle at “rest”. Electroencephalogr. Clin. Neurophysiol. 1995. V. 97. № 5. P. 215.
  23. Raccagni C., Nonnekes J., Bloem B.R. et al. Gait and postural disorders in parkinsonism: A clinical approach. J. Neurol. 2020. V. 267. № 11. P. 3169.
  24. Schade S., Mollenhauer B., Trenkwalder C. Levodopa equivalent dose conversion factors: An updated proposal including opicapone and safinamide. Mov. Disord. Clin. Pract. 2020. V. 7. № 3. P. 343.
  25. Yokochi M. Reevaluation of levodopa therapy for the treatment of advanced Parkinson's disease. Parkinsonism Relat. Disord. 2009. V. 15. Suppl. 1. P. S25.
  26. Brice T., McDonagh M. Abduction of the humerus by postural aftercontractions in man: Effects of force and duration of previous voluntary contractions. J. Physiol. (London). 2003. V. 551P. P. PC46
  27. Selionov V.A., Solopova I.A., Zhvansky D.S. et al. Lack of non-voluntary stepping responses in Parkinson's disease. Neuroscience. 2013. V. 235. P. 96.
  28. Bruijn S.M., Massaad F., Maclellan M.J. et al. Are effects of the symmetric and asymmetric tonic neck reflexes still visible in healthy adults?. Neurosci. Lett. 2013. V. 556. P. 89.
  29. Bologna M., Paparella G., Fasano A. et al. Evolving concepts on bradykinesia. Brain. 2020. V. 143. № 3. P. 727.
  30. Ruonala V., Pekkonen E., Airaksinen O. et al. Levodopa-Induced changes in electromyographic patterns in patients with advanced Parkinson's disease. Front. Neurol. 2018. V. 9. P. 35.
  31. Waldthaler J., Stock L., Student J. et al. Antisaccades in Parkinson's Disease: A Meta-Analysis. Neuropsychol. Rev. 2021. V. 31. № 4. P. 628.
  32. Müller T., Benz S., Börnke C. Delay of simple reaction time after levodopa intake. Clin. Neurophysiol. 2001. V. 112. № 11. P. 2133.
  33. Müller T., Benz S., Przuntek H. Choice reaction time after levodopa challenge in parkinsonian patients. J. Neurol. Sci. 2000. V. 181. № 1–2. P. 98.
  34. Müller T., Benz S., Przuntek H. Tapping and peg insertion after levodopa intake in treated and de novo parkinsonian patients. Can. J. Neurol. Sci. 2002. V. 29. № 1. P. 73.
  35. Woods D.L., Wyma J.M., Yund E.W. et al. Age-related slowing of response selection and production in a visual choice reaction time task. Front. Hum. Neurosci. 2015. V. 9. P. 193.
  36. Magrinelli F., Picelli A., Tocco P. et al. Pathophysiology of motor dysfunction in Parkinson's disease as the rationale for drug treatment and rehabilitation. Parkinsons Dis. 2016. V. 2016. P. 9832839.
  37. Cooke J.D., Brown S.H. Movement-related phasic muscle activation. II. Generation and functional role of the triphasic pattern. J. Neurophysiol. 1990. V. 63. № 3. P. 465.
  38. Berardelli A., Hallett M., Rothwell J.C. et al. Single-joint rapid arm movements in normal subjects and in patients with motor disorders. Brain. 1996. V. 119. Pt. 2. P. 661.
  39. Sun L., Malén T., Tuisku J. et al. Seasonal variation in D2/3 dopamine receptor availability in the human brain. Eur. J. Nucl. Med. Mol. Imaging. 2024. V. 51. № 11. P. 3284.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).