Cardiorespiratory Coordination during Physical Exercise Depends on the Zone of its Intensity in Young Athletes

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Assessment of cardiorespiratory coordination (CRC) during incremental cycling test have shown sensitivity to a human physical condition. However, the functional state of the body varies depending on the intensity of physical exercise and adaptability to stress, at the same time the CRC may also change. Among cyclical sports, swimming is distinguished by the increased respiratory muscles work in the water and a special breathing pattern synchronized with the limbs movements. This type of breathing can change the CRC. The purpose of this research was to study the dynamics of cardio–respiratory coordination over four states (rest, aerobic phase of the incremental cycling up to the ventilatory threshold (VT), isocapnic buffering zone from VT to the respiratory compensation point (RCP), and 25 Watts active recovery) in swimmers and skiers. The study involved 17 swimmers and 17 skiers aged 13–16, who have adult sports category and at least 3 years of sports experience. Participants performed incremental cycling up to a pulse corresponding to 85% Karvonen intensity. CRC was evaluated by the principal component (PC) analysis based on time series of heart rate, respiratory and gas exchange parameters averaged over 10 seconds for each participant. The percentage of the total variance of the initial cardio–respiratory parameters, explained by the coordination variable PC1, was considered to be the value of the CRC. The dynamics of cardio–respiratory coordination in swimmers and skiers depends on the intensity zone (F(3.90) = 51.8; p = 0.000) and does not depend on the sports type (F(1.30) = 1.71; p = 0.20), sex (F(1.30) = 0.01; p = 0.94), or the interaction of factors (for all interactions F(3.90) < 0.9 p > 0.44). The minimal coordination between HR, VE, FeO2, and FeCO2 was found at rest (55%), and the maximum was found at the aerobic (up to VT) stage of incremental cycling (80%, p < 0.001 compared with rest). Further, the CRC decreased at the stage from VT to RCP (74%) due to uncorrelated with other variables FeCO2 (p < 0.01), and at the stage of active recovery (72%) – due to FeO2 (p < 0.01). Thus, the CRC depends on the zone of the exercise intensity. Adaptation to swimming and sex do not affect the amount of CRC at different intensity zones of the exercise.

About the authors

V. V Gultyaeva

Scientific Research Institute of Neurosciences and Medicine

Email: gultyaevavv@neuronm.ru
ORCID iD: 0000-0001-9981-2452
PhD in Biology, Leading Researcher Novosibirsk, Russian Federation

D. Yu Uryumtsev

Scientific Research Institute of Neurosciences and Medicine

Email: uryumcevdy@neuronm.ru
ORCID iD: 0000-0002-6434-8220
PhD in Medicine, Scientific Researcher Novosibirsk, Russian Federation

M. I Zinchenko

Scientific Research Institute of Neurosciences and Medicine

Email: zinchenkomi@neuronm.ru
ORCID iD: 0000-0003-3107-0493
PhD in Medicine, Scientific Researcher Novosibirsk, Russian Federation

S. G Krivoschekov

Scientific Research Institute of Neurosciences and Medicine

Email: krivoschokovsg@neuromn.ru
ORCID iD: 0000-0002-2306-829X
Dr. Sci. (Medicine), Professor, Chief Scientific Officer Novosibirsk, Russian Federation

References

  1. Langan S.P. Timing is everything: Complex (a)synchrony of heart-muscle interaction during exercise // J. Physiol. 2025. https://doi.org/10.1113/jp287967
  2. Shoemaker J.K., Gros R. A century of exercise physiology: Key concepts in neural control of the circulation // Eur. J. Appl. Physiol. 2024. V. 124. № 5. P. 1323.
  3. Кривощеков С.Г., Урюмцев Д.Ю., Гультяева В.В., Зинченко М.И. Кардио-респираторная координация при острой гипоксии у легкоатлетов-бегунов // Физиология человека. 2021. Т. 47. № 4. C. 80.
  4. Gultyaeva V.V., Uryumtsev D.Y., Zinchenko M.I. et al. Cardiorespiratory coordination in hypercapnic test before and after high-altitude expedition // Front. Physiol. 2021. V. 12. P. 673570.
  5. Balagué N., González J., Javierre C. et al. Cardiorespiratory coordination after training and detraining. A principal component analysis approach // Front. Physiol. 2016. V. 7. P. 35.
  6. Papadakis Z., Etchebaster M., Garcia-Retortillo S. Cardiorespiratory coordination in collegiate rowing: A network approach to cardiorespiratory exercise testing // Int. J. Environ. Res. Public Health. 2022. V. 19. № 20. P. 13250.
  7. Garcia-Retortillo S., Javierre C., Hristovski R. et al. Cardiorespiratory coordination in repeated maximal exercise // Front. Physiol. 2017. V. 8. P. 387.
  8. Jamnick N.A., Pettitt R.W., Granata C. et al. An examination and critique of current methods to determine exercise intensity // Sports Med. 2020. V. 50. № 10. P. 1729.
  9. Sorgente V., Lopez-Hernandez A., Minciacchi D., González Ravé J.M. Diving into Recovery. The effects of different post-competition protocols for enhancing physio-psychological parameters in national level youth swimmers // J. Sports Sci. Med. 2023. V. 22. № 4. P. 739.
  10. Leahy M.G., Summers M.N., Peters C.M. et al. The Mechanics of Breathing during Swimming // Med. Sci. Sports Exerc. 2019. V. 51. № 7. P. 1467.
  11. Monteiro A.S., Magalhães J.F., Knechtle B. et al. Acute ventilatory responses to swimming at increasing intensities // PeerJ. 2023. V. 11. P. e15042.
  12. Чайников П.Н. Особенности физического развития и функционального состояния юных спортсменов циклических и игровых видов спорта // Пермский медицинский журнал. 2016. Т. 33. № 2. C. 104.
  13. Говорухина А.А., Веткалова Н.С. Особенности функционального состояния респираторной системы пловцов на разных этапах спортивной подготовки // Вестник НВГУ. 2017. № 1. C. 74.
  14. Lazovic-Popovic B., Zlatkovic-Svenda M., Durmic T. et al. Superior lung capacity in swimmers: Some question, more avers! // Rev. Port. Pneumol. 2006. V. 22. № 3. P. 151.
  15. Sable M., Vaidya S.M., Sable S.S. Comparative study of lung function in swimmers and runners // Indian J. Physiol. Pharmacol. 2012. V. 56. № 1. P. 100.
  16. Bovard J.M., Welch J.F., Houghton K.M. et al. Does competitive swimming affect lung growth? // Physiol. Rep. 2018. V. 6. № 15. P. e13816.
  17. Rochat I., Cote A., Boulet L.P. Determinants of lung function changes in athletic swimmers. A review // Acta Paediatrica. 2022. V. 111. № 2. P. 259.
  18. Солопов И.Н., Якимович В.С., Горбанёва Е.П. Особенности функционального и гормонального статуса организма пловцов 15–17 лет обоих полов с разным темпом индивидуального развития // Человек. Спорт. Медицина. 2022. Т. 22. № 4. С. 17.
  19. Давыдов В.Ю., Авдиенко В.Б. Отбор и ориентация пловцов по показателям телосложения в системе многолетней подготовки (теоретические и практические аспекты): монография. М.: Советский спорт, 2012. 384 с.
  20. Lavin K.M., O’Bryan S.M., Pathak K.V. et al. Divergent multiomic acute exercise responses reveal the impact of sex as a biological variable // Physiol. Genomics. 2025. V. 57. № 5. P. 321.
  21. Губанова А.Д., Медведев Д.В., Горбанёва Е.П. Дифференцированный контроль физической работоспособности спортсменов на основе факторов ее определяющих // Физическое воспитание и спортивная тренировка. 2014. Т. 2. № 8. С. 50.
  22. Холмирзаева М., Топилова Ф., Абдуллаев А.А., Мирзабеков Н.А. Физиологические изменения организма юных пловцов в зависимости от физических нагрузок // Современные тенденции развития науки и технологий. 2016. Т. 4. № 1. С. 116.
  23. Seffrin A., De Lira C.A., Nikolaidis P.T. et al. Age-related performance determinants of young swimmers in 100- and 400-m events // J. Sports Med. Phys. Fitness. 2022. V. 62. № 1. P. 9.
  24. Кривощеков С.Г., Водяницкий С.Н., Диверт В.Э., Гиренко Л.А. Реактивность и экономичность кардиореспираторной системы на гипоксю и физическую нагрузку у пловцов и лыжников // Ульяновский медико-биологический журнал. 2012. № 4. С. 102.
  25. Whipp B.J., Davis J.A., Wasserman K. Ventilatory control of the isocapnic buffering region in rapidly-incremental exercise // Respir. Physiol. 1989. V. 76. № 3. P. 357.
  26. Poole D.C., Rossiter H.B., Brooks G.A., Gladden L.B. The anaerobic threshold: 50+ years of controversy // J. Physiol. 2021. V. 599. № 3. P. 737.
  27. Гришин В.Г., Гришин О.В., Никульцев В.С. и др. Частотно-временной анализ колебаний показателей внешнего дыхания и сердечного ритма человека при физической нагрузке // Биофизика. 2022. Т. 67. № 4. С. 755.
  28. Smyth B., Maunder E., Meyler S. et al. Decoupling of internal and external workload during a marathon: An analysis of durability in 82,303 recreational runners // Sports Med. 2022. V. 52. № 9. P. 2283.
  29. Andrade D.C., Arce-Alvarez A., Salazar-Ardiles C. et al. Hypoxic peripheral chemoreflex stimulation-dependent cardiorespiratory coupling is decreased in swimmer athletes // Physiol. Rep. 2024. V. 12. № 1. P. e15890.
  30. De Abreu R.M., Cairo B., Porta A. On the significance of estimating cardiorespiratory coupling strength in sports medicine // Front. Netw. Physiol. 2023. V. 2. P. 1114733.
  31. Schäfer C., Rosenblum M.G., Kurths J., Abel H.H. Heartbeat synchronized with ventilation // Nature. 1998. V. 392. № 6673. P. 239.
  32. Hayano J., Yuda E. Pitfalls of assessment of autonomic function by heart rate variability // J. Physiol. Anthropol. 2019. V. 38. P. 3.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).