Methods for Interactome Analysis of Microproteins Encoded by Small Open Reading Frames

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Recent studies have shown that small open reading frames (sORFs, <100 codons) can encode peptides or microproteins that perform important functions in prokaryotic and eukaryotic cells. It has been established that sORF translation products are involved in the regulation of many processes, for example, they modulate the activity of the mitochondrial respiratory chain or the functions of muscle cells in mammals. However, the identification and subsequent functional analysis of peptides or microproteins encoded by sORFs is a non-trivial task and requires the use of special approaches. One of the critical steps in functional analysis is identification of protein partners of the peptide under study. This review considers the features of the interactome analysis of short protein molecules and describes the approaches currently used for studies in the field.

Sobre autores

I. Sedlov

Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry RAS

Email: feigor@yandex.ru
Russia, 117997, Moscow, ul. Miklukho-Maklaya 16/10

I. Fesenko

Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry RAS

Autor responsável pela correspondência
Email: feigor@yandex.ru
Russia, 117997, Moscow, ul. Miklukho-Maklaya 16/10

Bibliografia

  1. Guerra-Almeida D., Tschoeke D.A., Nunes-da-Fonseca R. // DNA Res. 2021. V. 28. P. 1–18. https://doi.org/10.1093/dnares/dsab007
  2. Yang X., Tschaplinski T.J., Hurst G.B., Jawdy S., Abraham P.E., Lankford P.K., Adams R.M., Shah M.B., Hettich R.L., Lindquist E., Kalluri U.C., Gunter L.E., Pennacchio C., Tuskan G.A. // Genome Res. 2011. V. 21. P. 634–641. https://doi.org/10.1101/gr.109280.110
  3. Andrews S.J., Rothnagel J.A. // Nat. Rev. Genet. 2014. V. 15. P. 193–204. https://doi.org/10.1038/nrg3520
  4. Storz G., Wolf Y.I., Ramamurthi K.S. // Annu. Rev. Biochem. 2014. V. 83. P. 753–777. https://doi.org/10.1146/annurev-biochem-070611-102400
  5. Dinger M.E., Pang K.C., Mercer T.R., Mattick J.S. // PLoS Comput. Biol. 2008. V. 4. P. e1000176. https://doi.org/10.1371/journal.pcbi.1000176
  6. Couso J.-P., Patraquim P. // Nat. Rev. Mol. Cell Biol. 2017. V. 18. P. 575–589. https://doi.org/10.1038/nrm.2017.58
  7. Chen J., Brunner A.-D., Cogan J.Z., Nuñez J.K., Fields A.P., Adamson B., Itzhak D.N., Li J.Y., Mann M., Leonetti M.D., Leonetti M.D., Weissman J.S. // Science. 2020. V. 367. P. 1140–1146. https://doi.org/10.1126/science.aay0262
  8. Wright B.W., Yi Z., Weissman J.S., Chen J. // Trends Cell Biol. 2022. V. 32. P. 243–258. https://doi.org/10.1016/j.tcb.2021.10.010
  9. Huang J.-Z., Chen M., Chen D., Gao X.-C., Zhu S., Huang H., Hu M., Zhu H., Yan G.-R. // Mol. Cell. 2017. V. 68. P. 171–184. https://doi.org/10.1016/j.molcel.2017.09.015
  10. Johnstone T.G., Bazzini A.A., Giraldez A.J. // EMBO J. 2016. V. 35. P. 706–723. https://doi.org/10.15252/embj.201592759
  11. Zhang H., Wang Y., Wu X., Tang X., Wu C., Lu J. // Nat. Commun. 2021. V. 12. P. 1076. https://doi.org/10.1038/s41467-021-21394-y
  12. Eisenberg E., Levanon E.Y. // Trends Genet. 2013. V. 29. P. 569–574. https://doi.org/10.1016/j.tig.2013.05.010
  13. Hayashi N., Sasaki S., Takahashi H., Yamashita Y., Naito S., Onouchi H. // Nucleic Acids Res. 2017. V. 45. P. 8844–8858. https://doi.org/10.1093/nar/gkx528
  14. Hartford C.C.R., Lal A. // Mol. Cell. Biol. 2020. V. 40. P. e00528-19. https://doi.org/10.1128/MCB.00528-19
  15. Kopp F., Mendell J.T. // Cell. 2018. V. 172. P. 393–407. https://doi.org/10.1016/j.cell.2018.01.011
  16. Ji Z., Song R., Regev A., Struhl K. // eLife. 2015. V. 4. P. e08890. https://doi.org/10.7554/eLife.08890
  17. Patraquim P., Magny E.G., Pueyo J.I., Platero A.I., Couso J.P. // Nat. Commun. 2022. V. 13. P. 6515. https://doi.org/10.1038/s41467-022-34094-y
  18. Ulitsky I. // Nat. Rev. Genet. 2016. V. 17. P. 601–614. https://doi.org/10.1038/nrg.2016.85
  19. Nelson B.R., Makarewich C.A., Anderson D.M., Winders B.R., Troupes C.D., Wu F., Reese A.L., McAnally J.R., Chen X., Kavalali E.T., Cannon S.C., Houser S.R., Bassel-Duby R., Olson E.N. // Science. 2016. V. 351. P. 271–275. https://doi.org/10.1126/science.aad4076
  20. Hao Y., Zhang L., Niu Y., Cai T., Luo J., He S., Zhang B., Zhang D., Qin Y., Yang F., Chen R. // Brief. Bioinform. 2018. V. 19. P. 636–643. https://doi.org/10.1093/bib/bbx005
  21. Polycarpou-Schwarz M., Groß M., Mestdagh P., Schott J., Grund S.E., Hildenbrand C., Rom J., Aulmann S., Sinn H.-P., Vandesompele J., Diederichs S. // Oncogene. 2018. V. 37. P. 4750–4768. https://doi.org/10.1038/s41388-018-0281-5
  22. Guo B., Wu S., Zhu X., Zhang L., Deng J., Li F., Wang Y., Zhang S., Wu R., Lu J., Zhou Y. // EMBO J. 2020. V. 39. P. e102190. https://doi.org/10.15252/embj.2019102190
  23. Rubtsova M., Naraykina Y., Vasilkova D., Meerson M., Zvereva M., Prassolov V., Lazarev V., Manuvera V., Kovalchuk S., Anikanov N., Butenko I., Pobeguts O., Govorun V., Dontsova O. // Nucleic Acids Res. 2018. V. 46. P. 8966–8977. https://doi.org/10.1093/nar/gky705
  24. Chugunova A., Loseva E., Mazin P., Mitina A., Navalayeu T., Bilan D., Vishnyakova P., Marey M., Golovina A., Serebryakova M., Pletnev P., Rubtsova M., Mair W., Vanyushkina A., Khaitovich P., Belousov V., Vysokikh M., Sergiev P., Dontsova O. // Proc. Natl. Acad. Sci. USA. 2019. V. 116. P. 4940–4945. https://doi.org/10.1073/pnas.1809105116
  25. Niu L., Lou F., Sun Y., Sun L., Cai X., Liu Z., Zhou H., Wang H., Wang Z., Bai J., Yin, Q., Zhang J., Chen L., Peng D., Xu Z., Gao Y., Tang S., Fan L., Wang H. // Sci. Adv. 2020. V. 6. P. eaaz2059. https://doi.org/10.1126/sciadv.aaz2059
  26. Immarigeon C., Frei Y., Delbare S.Y.N., Gligorov D., Machado Almeida P., Grey J., Fabbro L., Nagoshi E., Billeter J.-C., Wolfner M.F., Karch F., Maeda R.K. // Proc. Natl. Acad. Sci. USA. 2021. V. 118. P. e2001897118. https://doi.org/10.1073/pnas.2001897118
  27. Anderson D.M., Anderson K.M., Chang C.-L., Makarewich C.A., Nelson B.R., McAnally J.R., Kasaragod P., Shelton J.M., Liou J., Bassel-Duby R., Olson E.N. // Cell. 2015. V. 160. P. 595–606. https://doi.org/10.1016/j.cell.2015.01.009
  28. Casson S.A., Chilley P.M., Topping J.F., Evans I.M., Souter M.A., Lindsey K. // Plant Cell. 2002. V. 14. P. 1705–1721. https://doi.org/10.1105/tpc.002618
  29. Narita N.N., Moore S., Horiguchi G., Kubo M., Demura T., Fukuda H., Goodrich J., Tsukaya H. // Plant J. 2004. V. 38. P. 699–713. https://doi.org/10.1111/j.1365-313X.2004.02078.x
  30. Guo P., Yoshimura A., Ishikawa N., Yamaguchi T., Guo Y., Tsukaya H. // J. Plant Res. 2015. V. 128. P. 497–510. https://doi.org/10.1007/s10265-015-0703-1
  31. Röhrig H., Schmidt J., Miklashevichs E., Schell J., John M. // Proc. Natl. Acad. Sci. USA. 2002. V. 99. P. 1915–1920. https://doi.org/10.1073/pnas.022664799
  32. Blanvillain R., Young B., Cai Y.-M., Hecht V., Varoquaux F., Delorme V., Lancelin J.-M., Delseny M., Gallois P. // EMBO J. 2011. V. 30. P. 1173–1183. https://doi.org/10.1038/emboj.2011.14
  33. Frank M.J., Cartwright H.N., Smith L.G. // Development. 2003. V. 130. P. 753–762. https://doi.org/10.1242/dev.00290
  34. Dong X., Wang D., Liu P., Li C., Zhao Q., Zhu D., Yu J. // J. Exp. Bot. 2013. V. 64. P. 2359–2372. https://doi.org/10.1093/jxb/ert093
  35. Wang D., Li C., Zhao Q., Zhao L., Wang M., Zhu D., Ao G., Yu J. // Funct. Plant Biol. 2009. V. 36. P. 73–85. https://doi.org/10.1071/FP08154
  36. De Coninck B., Carron D., Tavormina P., Willem L., Craik D.J., Vos C., Thevissen K., Mathys J., Cammue B.P.A. // J. Exp. Bot. 2013. V. 64. P. 5297–5307. https://doi.org/10.1093/jxb/ert295
  37. Waugh D.S. // Trends Biotechnol. 2005. V. 23. P. 316–320. https://doi.org/10.1016/j.tibtech.2005.03.012
  38. Kimple M.E., Brill A.L., Pasker R.L. // Curr. Protoc. Protein Sci. 2013. V. 73. P. 9.9.1–9.9.23. https://doi.org/10.1002/0471140864.ps0909s73
  39. Jackson R., Kroehling L., Khitun A., Bailis W., Jarret A., York A.G., Khan O.M., Brewer J.R., Skadow M.H., Duizer C., Harman C.C.D., Chang L., Bielecki P., Solis A.G., Steach H.R., Slavoff S., Flavell R.A. // Nature. 2018. V. 564. P. 434–438. https://doi.org/10.1038/s41586-018-0794-7
  40. Arnoult N., Correia A., Ma J., Merlo A., Garcia-Gomez S., Maric M., Tognetti M., Benner C.W., Boulton S.J., Saghatelian A., Karlseder J. // Nature. 2017. V. 549. P. 548–552. https://doi.org/10.1038/nature24023
  41. Pronier E., Cifani P., Merlinsky T.R., Berman K.B., Somasundara A.V.H., Rampal R.K., LaCava J., Wei K.E., Pastore F., Maag J.L., Park J., Koche R., Kentsis A., Levine R.L. // JCI Insight. 2018. V. 3. № 22. https://doi.org/10.1172/jci.insight.122703
  42. Wang F., Zhu S., Fisher L.A., Wang W., Oakley G.G., Li C., Peng A. // Sci. Rep. 2018. V. 8. P. 2683. https://doi.org/10.1038/s41598-018-21040-6
  43. Cristea I.M., Williams R., Chait B.T., Rout M.P. // Mol. Cell. Proteomics. 2005. V. 4. P. 1933–1941. https://doi.org/10.1074/mcp.M500227-MCP200
  44. Schlesinger D., Elsässer S.J. // FEBS J. 2022. V. 289. P. 53–74. https://doi.org/10.1111/febs.15769
  45. LaCava J., Molloy K.R., Taylor M.S., Domanski M., Chait B.T., Rout M.P. // Biotechniques. 2015. V. 58. P. 103–119. https://doi.org/10.2144/000114262
  46. LaCava J., Fernandez-Martinez J., Hakhverdyan Z., Rout M.P. // Cold Spring Harb. Protoc. 2016. V. 2016. P. 601–605. https://doi.org/10.1101/pdb.top077545
  47. Gerace E., Moazed D. // Methods Enzymol. 2015. V. 559. P. 99–110. https://doi.org/10.1016/bs.mie.2014.11.010
  48. Jia J., Jin J., Chen Q., Yuan Z., Li H., Bian J., Gui L. // Biol. Res. 2020. V. 53. P. 24. https://doi.org/10.1186/s40659-020-00290-7
  49. Zhang S., Reljić B., Liang C., Kerouanton B., Francisco J.C., Peh J.H., Mary C., Jagannathan N.S., Olexiouk V., Tang C., Fidelito G., Nama S., Cheng R.K., Wee C.L., Wang L.C., Duek Roggli P., Sampath P., Lane L., Petretto E., Sobota R.M., Jesuthasan S., Tucker-Kellogg L., Reversade B., Menschaert G., Sun L., Stroud D.A., Ho L. // Nat. Commun. 2020. V. 11. P. 1312. https://doi.org/10.1038/s41467-020-14999-2
  50. Hopp T.P., Prickett K.S., Price V.L., Libby R.T., March C.J., Pat Cerretti D., Urdal D.L., Conlon P.J. // Biotechnology. 1988. V. 6. P. 1204–1210. https://doi.org/10.1038/nbt1088-1204
  51. Schäfer K., Braun T. // Biochem. Biophys. Res. Commun. 1995. V. 207. P. 708–714. https://doi.org/10.1006/bbrc.1995.1245
  52. Zhang Y., Natale R., Domingues A.P. Júnior, Toleco M.R., Siemiatkowska B., Fàbregas N., Fernie A.R. // Curr. Protoc. Plant. Biol. 2019. V. 4. P. e20099. https://doi.org/10.1002/cppb.20099
  53. Buker S.M., Iida T., Bühler M., Villén J., Gygi S.P., Nakayama J.-I., Moazed D. // Nat. Struct. Mol. Biol. 2007. V. 14. P. 200–207. https://doi.org/10.1038/nsmb1211
  54. Lightfoot J.W., Wilecki M., Rödelsperger C., Moreno E., Susoy V., Witte H., Sommer R.J. // Science. 2019. V. 364. P. 86–89. https://doi.org/10.1126/science.aav9856
  55. D’Lima N.G., Ma J., Winkler L., Chu Q., Loh K.H., Corpuz E.O., Budnik B.A., Lykke-Andersen J., Saghatelian A., Slavoff S.A. // Nat. Chem. Biol. 2017. V. 13. P. 174–180. https://doi.org/10.1038/nchembio.2249
  56. Matsumoto A., Pasut A., Matsumoto M., Yamashita R., Fung J., Monteleone E., Saghatelian A., Nakayama K.I., Clohessy J.G., Pandolfi P.P. // Nature. 2017. V. 541. P. 228–232. https://doi.org/10.1038/nature21034
  57. Field J., Nikawa J., Broek D., MacDonald B., Rodgers L., Wilson I.A., Lerner R.A., Wigler M. // Mol. Cell. Biol. 1988. V. 8. P. 2159–2165. https://doi.org/10.1128/mcb.8.5.2159-2165.1988
  58. Schembri L., Dalibart R., Tomasello F., Legembre P., Ichas F., De Giorgi F. // Nat. Methods. 2007. V. 4. P. 107–108. https://doi.org/10.1038/nmeth0207-107
  59. Makarewich C.A., Munir A.Z., Bezprozvannaya S., Gibson A.M., Young Kim S., Martin-Sandoval M.S., Mathews T.P., Szweda L.I., Bassel-Duby R., Olson E.N. // Proc. Natl. Acad. Sci. USA. 2022. V. 119. P. e2120476119. https://doi.org/10.1073/pnas.2120476119
  60. Evan G.I., Lewis G.K., Ramsay G., Bishop J.M. // Mol. Cell. Biol. 1985. V. 5. P. 3610–3616. https://doi.org/10.1128/mcb.5.12.3610-3616.1985
  61. Tollis S., Singh J., Palou R., Thattikota Y., Ghazal G., Coulombe-Huntington J., Tang X., Moore S., Blake D., Bonneil E., Royer C.A., Thibault P., Tyers M. // PLoS Biol. 2022. V. 20. P. e3001548. https://doi.org/10.1371/journal.pbio.3001548
  62. Magny E.G., Platero A.I., Bishop S.A., Pueyo J.I., Aguilar-Hidalgo D., Couso J.P. // Nat. Commun. 2021. V. 12. P. 5660. https://doi.org/10.1038/s41467-021-25785-z
  63. Fu H., Wang T., Kong X., Yan K., Yang Y., Cao J., Yuan Y., Wang N., Kee K., Lu Z.J., Xi Q. // Nat. Commun. 2022. V. 13. P. 3984. https://doi.org/10.1038/s41467-022-31762-x
  64. Feng S., Sekine S., Pessino V., Li H., Leonetti M.D., Huang B. // Nat. Commun. 2017. V. 8. P. 370. https://doi.org/10.1038/s41467-017-00494-8
  65. Young D.D., Schultz P.G. // ACS Chem. Biol. 2018. V. 13. P. 854–870. https://doi.org/10.1021/acschembio.7b00974
  66. Koh M., Ahmad I., Ko Y., Zhang Y., Martinez T.F., Diedrich J.K., Chu Q., Moresco J.J., Erb M.A., Saghatelian A., Schultz P.G., Bollong M.J. // Proc. Natl. Acad. Sci. USA. 2021. V. 118. P. e2021943118. https://doi.org/10.1073/pnas.2021943118
  67. Lafranchi L., Schlesinger D., Kimler K.J., Elsässer S.J. // J. Am. Chem. Soc. 2020. V. 142. P. 20080–20087. https://doi.org/10.1021/jacs.0c09574
  68. Richards A.L., Eckhardt M., Krogan N.J. // Mol. Syst. Biol. 2021. V. 17. P. e8792. https://doi.org/10.15252/msb.20188792
  69. Bosch J.A., Chen C.-L., Perrimon N. // Wiley Interdiscip. Rev. Dev. Biol. 2021. V. 10. P. e392. https://doi.org/10.1002/wdev.392
  70. Hung V., Zou P., Rhee H.-W., Udeshi N.D., Cracan V., Svinkina T., Carr S.A., Mootha V.K., Ting A.Y. // Mol. Cell. 2014. V. 55. P. 332–341. https://doi.org/10.1016/j.molcel.2014.06.003
  71. Rhee H.-W., Zou P., Udeshi N.D., Martell J.D., Mootha V.K., Carr S.A., Ting A.Y. // Science. 2013. V. 339. P. 1328–1331. https://doi.org/10.1126/science.1230593
  72. Trinkle-Mulcahy L. // F1000Res. 2019. V. 8. P. F1000 Faculty Rev-135. https://doi.org/10.12688/f1000research.16903.1
  73. Hopkins C., Gibson A., Stinchcombe J., Futter C. // Methods Enzymol. 2000. V. 327. P. 35–45. https://doi.org/10.1016/s0076-6879(00)27265-0
  74. Chu Q., Martinez T.F., Novak S.W., Donaldson C.J., Tan D., Vaughan J.M., Chang T., Diedrich J.K., Andrade L., Kim A., Zhang T., Manor U., Saghatelian A. // Nat. Commun. 2019. V. 10. P. 4883. https://doi.org/10.1038/s41467-019-12816-z
  75. Chu Q., Rathore A., Diedrich J.K., Donaldson C.J., Yates J.R., 3rd, Saghatelian A. // Biochemistry. 2017. V. 56. P. 3299–3306. https://doi.org/10.1021/acs.biochem.7b00265
  76. Rathore A., Chu Q., Tan D., Martinez T.F., Donaldson C.J., Diedrich J.K., Yates J.R., 3rd, Saghatelian A. // Biochemistry. 2018. V. 57. P. 5564–5575. https://doi.org/10.1021/acs.biochem.8b00726
  77. Zhang Q., Vashisht A.A., O’Rourke J., Corbel S.Y., Moran R., Romero A., Miraglia L., Zhang J., Durrant E., Schmedt C., Sampath S.C., Sampath S.C. // Nat. Commun. 2017. V. 8. P. 15664. https://doi.org/10.1038/ncomms15664
  78. Boix O., Martinez M., Vidal S., Giménez-Alejandre M., Palenzuela L., Lorenzo-Sanz L., Quevedo L., Moscoso O., Ruiz-Orera J., Ximénez-Embún P., Ciriaco N., Nuciforo P., Stephan-Otto Attolini C., Albà M.M., Muñoz J., Tian T.V., Varela I., Vivancos A., Ramón Y Cajal S., Muñoz P., Rivas C., Abad M. // Nat. Commun. 2022. V. 13. P. 6840. https://doi.org/10.1038/s41467-022-34529-6

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (289KB)
3.

Baixar (309KB)
4.

Baixar (331KB)
5.

Baixar (324KB)

Declaração de direitos autorais © И.А. Седлов, И.А. Фесенко, 2023

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».